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Abstract
The high-magnetic-field, low-temperature magnetic properties of low-dimensional electron
and hole systems reveal a wealth of fundamental information. Quantum oscillations of the
thermodynamic equilibrium magnetization yield the total density of states, a central quantity
in understanding the quantum Hall effect in 2D systems. The magnetization arising from
non-equilibrium circulating currents reveals details, not accessible with traditional
measurements, of the vanishingly small longitudinal resistance in the quantum Hall regime.
We review how the technique of magnetometry has been applied to these systems, the most
important discoveries that have been made, and their theoretical significance.

(Some figures in this article are in colour only in the electronic version)
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Introduction

In this review we outline how magnetometry measurements
have been used to examine the electronic properties of low-
dimensional systems, primarily the quasi-two-dimensional
electron system (2DES) formed in gallium–arsenide-based
heterostructures. We have divided the review into three
sections: in section 2 we consider the oscillatory magnetic
moment, i.e. the de Haas–van Alphen (dHvA) effect, observed
in a 2DES in thermodynamic equilibrium at low temperatures
and high magnetic fields. This essentially quantum mechanical
effect, originally discovered almost eighty years ago in
bismuth, has proved extraordinarily powerful in probing
electronic properties around the Fermi energy. In section 3
we examine non-equilibrium magnetic moments arising from
circulating induced currents. These currents, detected at
particular magnetic field ranges in the regime of the quantum
Hall effect (QHE), provide complementary information to
traditional electrical transport measurements. They have far
greater sensitivity to the resistance minima of the quantum Hall
state, and reveal quite unexpected results in the breakdown of
the QHE at high-current densities. To begin with however,
in section 1 we examine how these experimental studies on
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low-dimensional systems have been enabled by the develop-
ment of highly sensitive magnetometers over the past twenty-
five years or so. Readers who are interested only in the
scientific outcome of the experiments, rather than in the
techniques themselves, can skip this material and go straight
to section 2.

1. Magnetometry development

Measurements of the thermodynamic quantities such as
magnetization or heat capacity in a 2DES represent a
considerable experimental challenge because the size of the
signal is proportional to the number of electrons in the sample.
For a typical magnetization (dHvA) measurement of a 3D
metal (of volume 1 mm3), there are 1020 electrons; in a
typical measurement of a 2DES (area 10 by 10 mm and
having 1016electrons m−2) there are 1012. As we shall see in
section 2.1 the theoretical amplitude of the dHvA oscillations
in the latter case (two effective Bohr magnetons per electron)
would be 2.8 × 10−10 J T−1. In addition to the challenges of
tiny signal sizes, the measurements need to be made in high
magnetic fields (up to around 20 T) and at low temperatures
(from a few kelvin down to millikelvin).

The first attempt to measure the dHvA effect in a 2DES
used a commercial superconducting quantum interference
device (SQUID) magnetometer [1]. Although the sensitivity of
a SQUID is quantum-limited when operated in low magnetic
fields, its performance is severely degraded in high magnetic
fields. In this experiment the magnetic moment sensitivity
was 10−10 J T−1 with an averaging time per data point
of 30 min. It required a 2DES of overall area 240 cm2

consisting of ∼23 pieces of a multiple-quantum-well structure
containing 173 wells, stacked together to form a total of
∼ 4000 2DES layers. The measurement was restricted to
magnetic fields less than 5 T and yielded dHvA oscillations
30 times smaller than expected (probably because of inter-
layer inhomogeneity). The observation of 1/B periodic dHvA
oscillations was nevertheless a remarkable achievement at the
time. The only other SQUID magnetometry study of 2DES [2]
demonstrated a much improved sensitivity of 7 × 10−14 J T−1

at a maximum field of 10 T, using a thin-film dc SQUID
with integrated multi-turn input coil and incorporating NbN–
MgO–NbN Josephson junctions. A first-order gradiometer
was attached to the input coil to form a flux transformer and
the 2DES was placed within one of the gradiometer pick-up
loops. The SQUID itself was placed in a remote, magnetically
shielded location within the cryostat. A gate was used to
modulate the 2DES number density at a frequency of 1.2 kHz,
at which the SQUID noise was lowest. The sensitivity of
this instrument enabled signals to be detected from both odd-
integer and fractional QHEs [3]. However the method did have
one distinct disadvantage, that the modulation of the 2DES
number density makes the measurement highly perturbative,
and is likely to result in large induced currents [4], of which
the authors were unaware at the time.

A useful figure-of-merit in comparing magnetometers
is the resolution R in effective Bohr magnetons (defined
in section 2.1.4) per electron. This resolution takes into

account the size of the 2DES, as well as the magnetic
moment sensitivity of the magnetometer. In specifying this
for the different instruments reviewed here, we will assume
a single-layer 2DES of number density 1016 m−2 having
the maximum area that the instrument can accommodate
(without stacking), and use magnetic moment resolutions
determined at 5 T. We shall assume a measurement bandwidth
of 1 Hz. It is important to note that these conditions may
not coincide with those chosen by other authors in specifying
their magnetometers’ performance, but are chosen to provide
consistency in comparisons made within this review. Using
this definition, the resolution of the first SQUID instrument is
504 μ∗

B/e and for the later SQUID instrument it is 0.004 μ∗
B/e.

Nearly all other 2DES magnetization measurements have
used torque magnetometers. (It is interesting that the
discovery of the dHvA effect [5] was also made using a
torque magnetometer.) These use a spring to convert the
torque m × B, produced by the 2DES magnetic moment
m in the applied magnetic field B, into a displacement of
the sample. The displacement can then be detected using
capacitive, optical-lever or piezo-electric techniques. The
spring constant K determines the sensitivity of the device.
Typically the resolution of such a device when placed in a
high magnetic field, low-temperature environment is limited by
vibrations of the cryostat which couple to the movement of the
sample. In this limit, further reduction in K does not improve
resolution; instead one has either to reduce vibrations at
source, or to opt for a magnetometer design which is relatively
insensitive to vibrations. Torque magnetometers subjected to
uniform magnetic fields are sensitive to sources of anisotropic
magnetization, such as 2DES, and do not detect isotropic
magnetization. However, if a magnetic field gradient is also
present, they do become sensitive to the isotropic component
as well.

Torque magnetometers divide into two categories:
torsion-balance magnetometers and cantilever magnetometers.
Cantilever devices have the advantage that their deflection
is governed by the Young modulus of the spring, which is
typically ten times smaller than the torsional modulus which
determines the deflection of torsion-balance instruments.
However, the torsion-balance design is able to support larger
and heavier samples.

1.1. Torsion-balance magnetometers

The first torque magnetometry studies of 2DES used the
instrument shown schematically in figure 1(a) [6–9]. The
torsion fibre was a wire, 37 μm diameter, 2 cm long, made
from Pt–W alloy, which was suspended between two plastic
supports. A plastic disc was mounted on the fibre with
its face perpendicular to the fibre. On one side of the
disc a semicircular capacitance electrode was evaporated, and
electrically connected to the wire. The sample was also
attached to this disk assembly, with the normal to the 2DES
plane tilted at a small angle with respect to the applied
magnetic field. Two fixed pie-shaped electrodes were placed
parallel to and about 150 μm from the semicircular one,
without touching the fibre, forming a differential capacitor.
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Figure 1. Schematic diagrams of the magnetometers of: (a) Eisenstein et al [6]; (b) Templeton [10]; (c) Wiegers et al [11]; (d) Matthews et al
[12]; (e) Schaapman et al [13]; (f) Schwarz et al [14]. The magnetic field direction in (a) and (c)–(f) is vertical; in (b) it is horizontal. In all
cases the normal to the plane of the 2DES is tilted by 15◦–20◦ with respect to the field.

The torque caused by the magnetic moment of the 2DES
caused an imbalance of the differential capacitor, which,
connected to a ratio transformer, formed an ac voltage bridge.
The magnetometer achieved a magnetic moment sensitivity of
10−12 J T−1 at 5 T, corresponding to an angular resolution of
10−7 rad. Assuming a maximum sample size of 3.5 by 3.5 mm,
R ≈ 0.06 μ∗

B/e.
In addition to the resolution defined above, two further

figures-of-merit are useful for comparison of the performance
of torque magnetometers. These are the angular sensitivity
and angular responsivity; they are useful for comparing
the geometries of different magnetometers (capacitor-plate
configuration and dimensions) because they do not incorporate
the effects of K . The angular sensitivity is defined as

Sθ = 1

C

dC

dθ
, (1)

where C is the capacitance of one half of the differential
capacitor when the deflection, θ , is zero. The angular
responsivity, Sout, is defined as the output signal from the
bridge for unit angular deflection. The angular responsivity is
dV/dθ = (Vbridge/2C) dC/dθ when the differential capacitor
forms part of a voltage bridge, or dI/dθ = Vbridgeω dC/dθ
when incorporated into a current bridge (ω the angular
frequency of the bridge excitation). The design of any
magnetometer is a compromise between attainment of high
sensitivity, and stability of the instrument during thermal
cycling. For experiments in which signals are relatively
large (for instance those on induced currents, as discussed in
section 3), it is prudent to use a thicker torsion fibre in order
to ensure minimum movement of the magnetometer during
cool-down. For the Eisenstein magnetometer Sθ = 2/π ; it is
independent of deflection, so the instrument response is linear
even at large angles. Thus, Sout = Vbridge/π .

Templeton [10] proposed an alternative magnetometer
geometry consisting of a flat sapphire plate (rotor) suspended

on a torsion fibre (37 μm diameter, 3 cm long, Mo–W wire),
figure 1(b). The back side of the plate has a capacitance
electrode evaporated on to it, and a pair of fixed capacitor
plates are held parallel to it at a distance of 200 μm,
forming a differential capacitor, whose imbalance is detected
using an ac voltage bridge operating at 10 kHz. The 8
by 8 mm 2DES sample is attached to the front side of the
sapphire plate and tilted so that the normal to the 2DES
plane makes an angle of 20◦ with respect to the applied
magnetic field. The magnet used was a horizontal bore split-
coil superconducting solenoid; having the torsion fibre vertical
has the advantage that there is no gravitational component to
the restoring torque. The figures-of-merit for this instrument
are: Sθ ≈ l/2d (l the half-length of the rotor, d the separation
of the capacitor plates), the approximation being for small
deflections; Sout ≈ Vbridgel/4d; and R ≈ 0.006 μ∗

B/e.
The angular sensitivity is about 27 times larger than for the
Eisenstein instrument, though the resolution is only 10 times
better. This may be because extraneous sources of mechanical
noise are lower in the Eisenstein system, because the geometry
of the Eisenstein instrument is better at decoupling from
the mechanical noise, or because the resolutions quoted
by the authors were for different measurement bandwidths.
However the Templeton design clearly has potential for
higher sensitivity, not least because its figures-of-merit depend
on magnetometer parameters (rotor dimensions and plate
separation) that can be optimized. A further advantage of
the Templeton magnetometer is that applying a dc bias to
one pair of capacitor plates produces a known torque which
can be used to calibrate the instrument. The Templeton
instrument becomes nonlinear at large deflections. This is
rarely a problem in measurements of 2DES; furthermore, one
can place the Templeton magnetometer within a feedback loop,
in which the imbalance signal from the ac bridge provides a dc
bias which rebalances the magnetometer, thereby minimizing
magnetometer deflection and hence linearizing its response.
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Wiegers et al [11] described a magnetometer whose
design was optimized for low coupling to external sources of
vibration. It consisted (figure 1(c)) of a 17.6 mm diameter,
hollow, lightweight cylindrical rotor with eight capacitance
electrodes evenly spaced around its outer diameter, and the 3
by 5 mm sample mounted on a platform at its centre. The rotor
is suspended from 25 μm-diameter phosphor–bronze wires of
overall length 10 mm, inside a cylindrical housing with eight
pairs of capacitance electrodes around its inside perimeter.
The gap between inner and outer electrodes is 0.2 mm. The
symmetry of the rotor, with the suspension passing through
its centre of mass helps reduce unwanted coupling to external
vibrations. Furthermore, translations of the rotor along the
two axes perpendicular to the suspension do not change the
capacitances of the device to first order, resulting in further
noise rejection. The figures-of-merit for this instrument are:
Sθ = 16/π ; Sout = 8Vbridge/π ; and R ≈ 0.03 μ∗

B/e.
The present authors’ magnetometer is described in [12]

(figure 1(d)). It is similar to the Templeton design, but its rotor
is of symmetric design, and includes a ‘dummy’ sample—
a piece of GaAs substrate of the same dimensions as the
2DES—which cancels sources of background magnetization.
It also uses a torsion fibre having rectangular section for
greater stability and strength, and has in situ adjustment of
capacitor-plate separation. It operates within the low-vibration
environment of a sorption-pumped dilution refrigerator,
attached to a 24-tonne concrete block suspended on air-springs.
Normally our magnetometers are optimized for stability during
thermal cycling; typical figures-of-merit are: Sθ ≈ l/2d ,
Sout ≈ Vbridgel/4d (as for the Templeton design); and R ≈
0.01 μ∗

B/e.
Schaapman et al [13] used an optical-lever detection

method shown in figure 1(e). A 790 nm laser, optical fibre and
spherical ball lens provided a collimated beam of light which
was reflected from the back surface of the substrate of a 2DES,
and into a quadrant detector. The quadrant detector, consisting
of four optical fibres and four identical photodiodes located at
room temperature, detects the small rotations of the 2DES with
a resolution of 10−7 rad, resulting in R ≈ 0.01 μ∗

B/e. The
advantage of this method of detection is that it avoids exposing
the 2DES to the large electric fields associated with capacitance
detection. Exposure to stray infrared light is however a concern
since it can influence both electron density and mobility [15].

Torsion-balance magnetometers can also be set up as
torsional oscillators, in which the anisotropic component of
magnetization causes a shift in the resonant frequency. Crowell
et al [16] demonstrated this type of magnetometer, in which
the rotor and torsion fibres were fabricated from a single piece
of silicon, and were able to measure a magnetic moment of
2 × 10−11 J T−1 at 1 T using an averaging time of 10 s.

1.2. Cantilever torque magnetometers

Schwarz et al [14] have developed a cantilever magnetometer
design, in which the cantilever and the frame to which it
is attached are fabricated from the GaAs wafer containing
the 2DES (figure 1(f)). This greatly reduces the background
magnetization. The 2DES itself had dimensions 2 by 2 mm

and was positioned on a ‘paddle’ at the end of the cantilever.
The thin part of the cantilever was 100 μm thick, 1 mm wide
and 2 mm long. The quasi-static bending of the cantilever due
to the m×B torque was measured; both capacitive and optical
interferometric detection [17, 18] have been demonstrated.
For capacitive detection, a magnetic moment as low as 5 ×
10−15 J T−1 at 10 T, which is equivalent to R ≈ 0.002 μ∗

B/e,
was measured. Optical detection improves these figures by an
order of magnitude.

Harris et al [19] have fabricated a GaAs micromechanical
cantilever, length 320 μm, width 50 μm and thickness 0.1 μm
incorporating a 100 μm by 40 μm 2DES. The cantilever was
excited at resonance by a piezo-electric crystal and its motion
detected using an optical-fibre interferometer. The magnetic
moment of the 2DES produces an extra restoring torque which
shifts the cantilever resonant frequency. The cantilevers had
a resonant frequency of around 800 Hz with a quality factor
Q of 30 000 in vacuum below 4.2 K. The resulting magnetic
moment sensitivity was 3×10−17 J T−1 at 0.1 T, corresponding
to R ≈ 0.005μ∗

B/e. Reducing the size of the 2DES by so much
compared with torque magnetometry strongly reduces induced
currents that otherwise can mask the dHvA oscillations. It
also reduces the effects of long-range disorder. Because the
sensitivity of a cantilever is inversely proportional to the cube
of its thickness while the number of electrons in a 2DES scales
as its area, it is beneficial to scale magnetometers down as long
as a suitable detection scheme can be found.

2. Equilibrium magnetization

In 1930 de Haas and van Alphen [5, 20] discovered
oscillations, as a function of magnetic field, in the low-
temperature magnetization of the semi-metal bismuth. These
oscillations are now usually referred to as the dHvA effect, or
as magnetic quantum oscillations since they are intrinsically
quantum mechanical in origin. The effect has been observed in
many degenerate fermion systems, such as electrons or holes in
a 3D or quasi-2D system, or even the more esoteric ‘composite
fermions’ associated with the fractional quantum Hall effect
(FQHE). It is closely related to the Shubnikov–de Haas
(SdH) effect, in which the electrical resistance oscillates with
field, and both phenomena are due to the Landau-level (LL)
quantization [21–23] of allowed energy states of a charged
particle in a magnetic field. Use of the dHvA effect as an
experimental tool was pioneered by Shoenberg and extensively
pursued by numerous researchers (see [24] for a detailed
overview) in 3D systems. The dHvA effect in 3D systems
proved a powerful method in the determination of the Fermi
surface properties of metals as it yields not only the extremal
Fermi surface cross-section (perpendicular to the field) but also
electron scattering rates and effective masses. In contrast, the
SdH effect (together with the Hall effect) has been more widely
applied in obtaining similar information in 2D systems since in
this case oscillations in resistance are fairly easily measured,
whereas the magnetization oscillations are tiny because of the
small number of charge carriers involved. However, because
it is a thermodynamic rather than a transport property, the
dHvA effect provides a far more direct quantitative measure of
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Fermi surface properties and this has driven its theoretical and
experimental application in 2D systems. Importantly, much of
this work has also been driven by the desire to understand fully
the physics of 2D systems in the quantum Hall regime.

The theory of the dHvA effect in 3D systems was
developed to describe the observed oscillations in great detail,
and the seminal theory of the non-interacting Fermi system
is due to Lifshitz and Kosevich (LK) [25, 26]. Their theory
yielded, as a Fourier-like series, an analytic expression for the
oscillatory part of the magnetization as a function of magnetic
field and temperature, including a treatment of spin-splitting.
With the inclusion of the effects of electron scattering by
impurities [27–29], this basic description was used in a vast
range of Fermi surface studies of pure metals and alloys.
It was later also extended to include the sometimes subtle
modifications arising from many-body interactions [30–32].
However, the LK analysis cannot be quantitatively applied to
2D systems as various approximations which are made in its
derivation break down: oscillations of the chemical potential
μ, nearly always entirely negligible in 3D, are important
in 2D systems [33] and in addition the approximation that
the LL separation h̄ωc (discussed in 2.1.1 below) is small
compared with μ commonly fails. Instead, since the early
1980s, new theoretical derivations of the 2D dHvA effect
have been developed. Modified analytical formulae for the
LK-type harmonics have been given by various authors,
although these are less necessary with present-day computing
power, which (given an underlying physical model) makes
numerical evaluation of dHvA oscillations, and comparison
with experiment, straightforward.

Experimentally, dHvA studies of 2D systems have grown
following the increasing availability of high quality 2D
systems. In this review we shall concentrate almost exclusively
on the (quasi-) 2D electron system formed in gallium–arsenide-
based heterostructures (mainly GaAs/(Al, Ga)As structures),
where growth techniques have improved enormously since
the 1970s, driven in great part by technological applications.
Constraints of space, and the area of expertise of the reviewers,
mean that we shall not consider much of the large body of
important research carried out on quasi-2D systems such as
intercalated graphite (see [34, 35] for reviews), organic charge-
transfer salts [36] and rare-earth compounds.

2.1. Theory of the dHvA effect in 2D systems

The theory of magnetic quantum oscillations in a 2D Fermi
system subject to a uniform magnetic field B , of magnitude B,
perpendicular to its plane, differs in several respects from the
3D case. In 3D the dispersion of electron (or hole) energy in the
z-direction (the direction of the magnetic field) is important:
the LK formula shows that extremal areas of the Fermi surface
cross-section perpendicular to z are responsible for dHvA
oscillations, and that their curvature affects the magnitude and
phase of the oscillations. The quasi-2D case is simpler since
z-dispersion plays no role. (This simplicity is lost if more
than the lowest subband of the 2D confining potential has to
be included, and the 3D limit must of course be approached as
the number of subbands is increased.) However, the 2D case

is complicated by the fact that, to maintain the number density
of carriers constant, the influence of LL formation is to cause
oscillations in the chemical potential μ [37–39, 33], as we
describe shortly. In 3D these oscillations are negligible (much
less than h̄ωc) since changes in occupancy of the LLs are much
smaller than the number of carriers enclosed by the whole
Fermi surface. Additionally, many-body renormalization of
the effective mass appearing in the LK formula has been
shown [40, 41] to break down in 2D, unless the oscillations
are significantly damped by thermal or scattering effects.

2.1.1. Landau levels and density of states. We first
summarize the essential physics describing the dHvA effect, in
the absence of spin-splitting and many-body effects. Consider
a 2D system of electrons (occupying a single subband) having
a quadratic zero-field dispersion relation ε(k) = h̄2k2/2m∗
in an effective mass approximation where k is the in-plane
wavevector k = (kx, ky). The density of states (DOS) per unit
area ρ(ε) is a constant m∗/π h̄2 (including spin degeneracy).
The zero-field chemical potential μ0 (often called the ‘Fermi
energy’ or ‘Fermi level’) is determined by μ0 × m∗/π h̄2 = ns

where ns is the number of electrons per unit area. In a magnetic
field B in the z-direction the electron energy eigenvalues take
the form (see (A.7))

ε� = h̄ωc
(
�+ 1

2

)
, (2)

where ωc = eB/m∗ is the cyclotron frequency. Each Landau
level, labelled by the quantum number � = 0, 1, 2, . . . has, as
shown in (A.9), a degeneracy gL given by

gL = 2eB/h, (3)

including spin. The DOS is thus split into a series of δ-
functions separated by the energy h̄ωc and the number of
LLs actually occupied is equal to ns/gL (ns the 2D electron
density), which can be non-integer. If spin-splitting of the
levels is included, the degeneracy is halved and so this number
is doubled to

ν ≡ nsh/eB (4)

which defines the filling factor ν. In terms of the flux
quantum φ0 ≡ h/e = 4.14 × 10−15 T m2, the filling factor
is equal to the number of electrons in the sample divided by
the number of flux quanta passing through the sample.

In a real system, perturbations result in a LL broadening
� which is related to a scattering lifetime τ through
the uncertainty relation � ∼ h̄/τ . Hence the way
in which the density of states deviates from the above
ideal behaviour provides important information about the
equilibrium properties of the 2DES. The most significant effect
arises from electron–impurity scattering. In 3D systems,
Dingle’s phenomenological model [27] assumed that this
scattering resulted in a Lorentzian broadening of each LL,
an assumption later justified by Brailsford [28]. Brailsford’s
result appears not to transfer to 2D however, and over the
years there has been no clear experimental or theoretical
consensus as to the exact form of the DOS. An early
theoretical paper by Ando and Murayama [42] examined
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the broadening of LLs due to charged impurities, modelled
as scatterers with a Gaussian potential, in a 2DES in a
GaAs/(Al, Ga)As heterostructure including self-consistent
screening. They concluded that the broadening is a strongly
oscillating function of the position of the chemical potential,
becoming largest when the μ lies between LLs and hence
screening is minimized. Similar conclusions were reached on
the basis of a number of calculations [43, 44] and experiments
on heat capacity [45] and cyclotron resonance [46]. Smith
et al [47, 48] modelled magnetocapacitance data using a field-
independent Gaussian DOS, but a field-dependent width (� ∼√

B) has also been reported experimentally from dHvA [9] and
magnetocapacitance [49] measurements, the latter requiring
in addition a constant background DOS. Other experiments
though indicate a Lorentzian DOS [50, 51]. A more recent
theoretical model of Glutsch et al [52] showed that a distorted
Gaussian DOS can arise, which depends on LL index. We do
not attempt to review all the seemingly conflicting data here,
but restrict ourselves to examining, in section 2.2 some of
the conclusions drawn from dHvA measurements by various
authors.

To proceed further, we take two models of LL broadening
which have been commonly employed, those of Lorentzian
and Gaussian line shape. If each LL has a Lorentzian-shaped
broadening, the resultant total density of states ρL can be
expressed as

ρL(ε) = 2eB

h

1

π

+∞∑

�=−∞

�

(ε − ε�)2 + �2
. (5)

For mathematical convenience, this expression assumes that
the sum over LLs can be extended to −∞. One can then
express the resultant periodic DOS as a Fourier series, which
can be a convenient form for further calculation. This has been
employed by Shoenberg [24] and Potts et al [51] in calculating
magnetization (see also section 2.1.4 below). Although the
true DOS does not extend below zero, this is expected to
be unimportant since the oscillatory magnetization effects we
consider below depend on the change of occupancy of states
near the Fermi energy, which is usually much larger than both
relevant energy scales � and kBT . At the magnetic field at
which dHvA oscillations just become resolved, h̄ωc ≈ � but
μ lies in a high-index LL so μ 	 � and h̄ωc. In the extreme
magnetic quantum limit (ν < 1) μ ≈ h̄ωc/2 but h̄ωc 	 � and
kBT .

Actually, (5) turns out to be summable in closed form [53]:

ρL(ε) = 2eB

h

1

h̄ωc

sinh γ

cos β + cosh γ
(6)

where γ and β are the dimensionless parameters

γ = 2π�/h̄ωc and β = 2πε/h̄ωc. (7)

This equation takes simple forms in the weak scattering (or
high-field) limit:

ρL(ε) ≈ 2eB

h

1

h̄ωc

γ

1 + cos β
, γ 
 1, (8)

Figure 2. DOS around the lowest LL for Gaussian (10) (highest blue
solid curve) and Lorentzian (5) (middle red solid curve) broadening
with � = 0.1 meV. A value of B = 1.0 T has been chosen,
corresponding to h̄ωc = 1.72 meV for a gallium–arsenide-based
heterostructure with electron effective mass 0.067 times the free
electron mass. Also illustrated is a Gaussian with an added uniform
background (blue broken curve) ξ = 0.3 as described by (26)
discussed in section 2.2. The DOS have been normalized through
division by the zero-field DOS.

and in the strong scattering (low-field) limit:

ρL(ε) ≈ 2eB

h

1

h̄ωc
(1 − 2e−γ cos β), γ 	 1, (9)

which tends to the expected zero-field value m∗/π h̄2 as γ →
∞. The above equations (8) and (9) are useful in obtaining
analytic expressions for the magnetization.

A Gaussian broadening leads to a total density of states ρG

that can be expressed as

ρG(ε) = 2eB

h

1

�
√

2π

+∞∑

�=−∞
exp

[
− (ε − ε�)

2

2�2

]
(10)

where again the sum over LLs has been extended to −∞.
This summation does not, as far as we are aware, have a
convenient closed-form expression. However, it is easily
evaluated numerically by summing over a few LLs around ε
since the exponentially decreasing tails of the Gaussians give
rapid convergence. Alternatively this periodic DOS can again
be written as a Fourier series.

The shapes of these DOS are illustrated in figure 2.

2.1.2. Thermodynamics. We next require an expression
relating the magnetization to thermodynamic properties of the
system. This follows simply from the expression −m dB for
the work done on a sample of magnetic moment m when the
external field is increased by an amount dB (we take m and B
parallel for simplicity). Then the change dU in internal energy
of the sample can be written with usual notation as

dU = T dS − m dB (11)

if volume changes are neglected. However, it is more usual to
consider an ‘open’ system, in which the number of particles is
not fixed, in which case (11) is modified to read

dU = T dS − m dB + μ dN , (12)
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where the last term allows for change in the particle number N ,
and μ is the chemical potential. The reason for taking an open
system only becomes apparent when looking at the statistical
mechanics of the problem; it turns out to be mathematically
much simpler [54] to evaluate the grand canonical partition
function instead of the canonical partition function. (This
mathematical convenience of course has no influence on the
physics, as is clear by imagining the open system just to be a
subsystem in a much larger closed system.)

Introducing the Helmholtz free energy defined by F ≡
U − T S, and the thermodynamic potential defined by � ≡
U − T S − μN , it follows that we can write m in either of the
forms

m = −∂F

∂B

∣
∣
∣
∣
T,N

or m = −∂�
∂B

∣
∣
∣
∣
T,μ

. (13)

It is also useful to derive the following equations from (12):

μ = ∂F

∂N

∣
∣
∣∣
T,B

and N = −∂�
∂μ

∣
∣
∣∣
T,B

. (14)

These thermodynamic relations are quite general, and as
pointed out by Shoenberg [24] for example and many others,
one may use either formula (13) to evaluate m, depending on
which is more convenient: any physical constraint, such as a
fixed number of particles or fixed electrochemical potential,
or even something in between, must still be built into the
evaluation of F or �. Indeed, magnetic quantum oscillations
in a 2D system are qualitatively rather different in the limits
of a constraint of fixed carrier number density ns (equal to
N/A where A is the sample area) or fixed chemical potential
μ. (As already noted, the difference in 3D systems is usually
small enough to ignore.) In fact, for a single subband the
zero temperature, zero-scattering, ideal sawtooth oscillations
in m are of opposite sign for the two cases, while for a multi-
subband system extra oscillation frequencies are produced if ns

is fixed.

2.1.3. Statistical mechanics. The central quantity of
statistical mechanics for an open system is the grand canonical
partition function �, which is related to the thermodynamic
potential� by

� = −kBT ln�. (15)

For a gas of independent fermions with single-particle
eigenenergies labelled εi it can be shown [54] that

ln� =
∑

i

ln[1 + e(μ−εi )/kB T ]. (16)

It thus follows from the second equation in (14) that

N =
∑

i

[e(εi −μ)/kB T + 1]−1. (17)

In terms of the DOS these become

� = −kBT
∫
ρ(ε) ln[1 + e(μ−ε)/kB T ] dε (18)

and

N =
∫
ρ(ε)[e(ε−μ)/kB T + 1]−1 dε. (19)

The free energy F is therefore just

F = μN − kBT
∫
ρ(ε) ln[1 + e(μ−ε)/kB T ] dε. (20)

From the energy eigenstates of 2D electrons as a function
of magnetic field, the thermodynamic quantities � and F , and
hence the magnetic moment, may be evaluated. In certain
limits of h̄ωc, μ and kBT useful analytic approximations to
m can be made. However, the equations are most easily
evaluated numerically (and this is essential in comparing
with experimental results), so we first look at some simple
numerical illustrations.

2.1.4. Some simple examples. If the electrochemical potential
μ were fixed, the integration in (18) could be performed
directly numerically as a function of field, and the resultant �
differentiated with respect to B as in (13). For a 2D system
it is usual to assume that the electron density ns is fixed,
independent of magnetic field (possible departures from this
picture will be examined later). This means, by (14), (17)
or (19), that μ is field dependent and needs first to be evaluated
at each field value before calculating � or F . (Zawadzki [55]
followed essentially this procedure in an early model of
2D dHvA, but assumed a delta function DOS.) The general
procedure used for fixed N is thus as follows: (i) calculate μ
from (19), using an iterative method such as bisection [51];
(ii) find � and hence F using (18) and (20); (iii) differentiate
F with respect to B to find m (13). Alternatively, it is possible
to replace steps (ii) and (iii) by differentiating � numerically
at constant μ, but this requires twice the number of evaluations
as the first method.

The above is illustrated by looking at the case of an
idealized 2D electron system at zero temperature and with
no LL broadening, calculated numerically as described above
and shown in figure 3. The periodicity of the oscillations is
straightforward to understand: taking T = 0 the occupancy
of the LLs is such that ns = gL(�max + f ), where �max is the
index of the highest occupied LL and the fractional occupancy
f of the highest LL (in the range 0–1) maintains constant total
number density. Thus �max = trunc(ns/gL), where trunc(x) is
the largest integer value less than or equal to x . As gL increases
with increasing field, �max becomes smaller; f drops to zero
periodically in reciprocal field whenever

1

B
= 2e

hns
�max (21)

and so the number density can be measured from the oscillation
period. The quantity hns/2e is the dHvA frequency.

The free energy is the sum of the individual LL energies

F = U = gLh̄ωc

[�max−1∑

�=0

(�+ 1
2 )+ f (�max + 1

2 )

]

= gLh̄ωc[ 1
2�

2
max + f (�max + 1

2 )].
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Figure 3. Theoretical thermodynamic potential �, free energy F , electrochemical potential μ and magnetic moment m versus field for a
GaAs 2DES with number density 4 × 1015 m−2. The broken lines on the graph for μ show the field-dependent energies ε� of the lowest
Landau level � = 0 (lowest slope) and the levels � = 1 · · · 4 as given by (2). The temperature and broadening are both set to zero.

Differentiation of F , bearing in mind that �max is stepping with
field, gives m. The sawtooth shape of the magnetic moment
oscillations at T = 0 reflects a gradual rise of μ = (�max +
1
2 )h̄ωc with increasing field, followed by its instantaneous drop
when the highest partially filled LL becomes empty, as seen
in the graph for μ in figure 3. The highest LL is partially
occupied, except at the lowest points on the μ curve, and its
occupancy decreases as the field is raised. The maximum
excursion of the oscillations from m = 0 in this case is
one effective Bohr magneton per electron (the effective Bohr
magnetonμ∗

B = eh̄/2m∗ = 1.38×10−22 J T−1 in GaAs, where
the electron effective mass is 0.067 times the free electron
mass). This follows since, at zero T , the jump�m in magnetic
moment (per electron) will be ∼h̄ωc/B = 2μ∗

B.
If LL broadening is included, the amplitude of the

dHvA oscillations is damped by a field-dependent factor
approximately as exp(−2π�/h̄ωc). Physically, the broadened
DOS smears out the change in LL occupancy if � � h̄ωc.
Similarly, the influence of finite T is to cause the amplitude
of the dHvA oscillations to depend on field and temperature
roughly as exp(−2π2kBT/h̄ωc). This occurs due to kBT
broadening of the Fermi function in (20) which smears out the
change in LL occupancy if kBT � h̄ωc. An exact numerical
calculation of the effect of temperature is shown in figure 4.

We examine numerically the effect of LL broadening
shortly, and compare with experimental results in section 2.2,
but it is first instructive to look at an analytical approximation.
The amplitude reduction factor due to scattering follows
straightforwardly from (9), valid in the limit 2π� 	
h̄ωc. Substituting (9) into (19) for the particle number, the
oscillatory part of N contains the factor exp(−2π�/h̄ωc)

and can be neglected, yielding μ approximately constant
(m∗/π h̄2)μ ≈ ns. (This is of course the approximation
appropriate to the derivation of the LK formula in 3D, and

Figure 4. Theoretical magnetic moment m versus field for a GaAs
2DES with number density 3.18 × 1015 m−2, at temperatures of 0.3,
1, 3, 5 and 10 K.

hence we expect the LK formula to become valid in 2D in this
limit. In general though, departures from the LK harmonics
will be seen in 2D [56].) Substituting (9) into (18) yields, since
the first term in an integration by parts vanishes,

� = −2eB

πh
e−γ

∫ ∞

0

1

1 + e(ε−μ)/kB T
sin

(
2πε

h̄ωc

)
dε

where we have dropped the term which is not oscillatory in
field. The lower limit of integration can be extended3 to
−∞ without changing the oscillatory part of the integral, if
μ 	 kBT , and it is then easily evaluated using a suitable
contour integration to give

� = 2eB

h
kBT

exp(−2π�/h̄ωc)

sinh(2π2kT/h̄ωc)
cos

(
2πμ

h̄ωc

)
. (22)

3 A factor exp(−δ|ε|), δ → 0 must be introduced to ensure convergence of
the integral.
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Figure 5. Model densities of states (for B = 1 T) (left) and the resulting dHvA oscillations versus inverse magnetic field (right) for a 2DES
with ns = 4 × 1015 m−2, broadening parameter � = 0.1 meV, at a temperature of 0.05 K. The DOS models are, from top to bottom, a
Gaussian (10), a Lorentzian (5) and a Gaussian with an added constant background with ξ = 0.3 (26). The damping of the oscillations is
clearly different for the three models. The insets show a few high-field oscillations: the Gaussian DOS gives near-ideal sawtooth oscillations,
while the Lorentzian is significantly smoother and smaller than ideal. The introduction of a background skews the sawtooth as well as
reducing the amplitude.

The sinh term is ∼ exp(−2π2kT/h̄ωc) in the high-temperature
limit.

The low-temperature limit is not amenable to a simple
analytic formulation, so we consider a few illustrative
numerical calculations in figure 5. This shows the effects
of different model DOS on the dHvA oscillations in the
low-temperature limit kBT 
 �. For a Gaussian DOS,
the oscillation amplitude of ±1 effective Bohr magneton per
electron in the high-field limit is reached more quickly than
for the Lorentzian DOS, and consequently the sawtooth shape
(insets to right-hand panels) is more pronounced in the former
case. Addition of a constant background DOS reduces the
dHvA oscillation amplitude and also skews the sawtooth shape
seen at high field (inset to bottom right-hand panel).

2.1.5. Many-body interactions. In principle, electron–
electron and electron–phonon scattering need to be included
in the dHvA effect. In 3D, many-body generalizations of the
LK formula exist. The case of electron–electron interactions
was shown by Luttinger [30] merely to alter the phase of
the oscillations. Electron–phonon interactions were treated by
Engelsberg and Simpson [31] for a realistic phonon spectrum
and revealed the surprising result that almost the only effect is
to renormalize the effective mass in the LK expression, rather
than to contribute to LL broadening through electron–phonon
scattering—a result confirmed by experiment [57]. (Small
departures from the LK formula were also predicted and later
confirmed experimentally [32, 58].)

The above treatments used in 3D are not directly
applicable to the 2D case: for electron–electron interactions

9
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Curnoe and Stamp [40] showed that, depending on conditions
of temperature and scattering, there would be very strong
departure from the LK formula. This is a result of the
breakdown of an expansion in h̄ωc/μ of the electron self-
energy which is valid in 3D only [30]. Martin et al [41]
included the effects of disorder and interactions in 2D, with
the approximation that oscillations in μ were small. They
found that the dHvA oscillations will follow the field and
temperature dependence of the LK formula, valid in 3D,
only if the oscillations are heavily damped by the disorder
or temperature. They also noted that, similar to the 3D
case, any inelastic interactions, electron–phonon or electron–
electron, do not damp the oscillation amplitude, although
they do renormalize the effective mass. Finally, they found
that accounting for interference between electron–impurity
and electron–electron interactions resulted in a temperature-
dependent effective mass scaling as T ln T . This last result
was confirmed by calculations of Adamov et al [59] and there
is supporting experimental evidence for it [60–62] in SdH
studies.

2.1.6. Relationship with edge currents. Although (in a
macroscopically-sized sample) the dHvA effect is a bulk
equilibrium thermodynamic effect and can be quantified
without regard to the boundaries of the real, finite, sample
(see for example the book by Peierls [63] for a short history)
it is instructive briefly to examine the magnetization from
the complementary viewpoint of equivalent currents flowing
around the edge of the sample. (In samples where the lateral
dimension become comparable with the magnetic length lB , as
discussed in section 2.2.6, the boundaries of course play an
important role.)

If the magnetization M is the magnetic moment per
unit area (restricting the treatment to 2D, M has units of
ampere) we can relate this to Amperian equivalent currents
using standard electromagnetic theory [64]. The equivalent
current density (in A m−1) in the bulk is

jbulk(r) = ∇ × M . (23)

The bulk current is thus zero for a homogeneous sample which
has uniform magnetization. The current (in A) flowing around
the sample edge is

Iedge = M × n (24)

where n is the outward unit vector in the 2D plane normal
to the sample edge. In terms of current density this can be
expressed

jedge = M × n δ(r − redge). (25)

The physical interpretation of the last equation is that a uniform
magnetization M can be replaced by an equivalent current
flowing around only the outermost edge of the sample.

The above three equations are general and apply
classically or quantum mechanically. However the relationship
with the current carried by particular quantum states in
the bulk or near the edge of a sample is not always
straightforward. As noted by Středa and Smrčka [65], the

Figure 6. Highly schematic representation of the cyclotron orbits of
electrons in a rectangular 2DES. The (black dashed) inner orbits in
the bulk of the sample combine with the (blue solid) skimming
orbitals to produce a counterclockwise conventional current. The
(red dashed) skipping orbits produce a clockwise conventional
current. Classically these two currents exactly cancel, but in a
quantum mechanical picture they do not.

thermodynamic equilibrium edge currents which give rise to
electron diamagnetism of free electrons can usefully be thought
of (for macroscopic samples) as divided into two classes:
(i) skimming currents, where the cyclotron orbits lie within
the bulk of the sample; and (ii) skipping currents, which
are associated with cyclotron orbits interrupted at the surface
and which therefore travel along the edge in the opposite
direction to bulk orbits. These orbits, together with bulk orbits,
are illustrated for the classical case in figure 6. Classically,
M is zero as the skimming and skipping currents exactly
cancel, but this cancellation is not generally exact in a quantum
mechanical calculation. Bremme et al [66] presented a simple
picture of non-interacting electrons without scattering to show
the contributions to the magnetic moment of the sample
arising from both bulk (including skimming) and skipping
states in the quantum mechanical case. They verified that
the magnetic moment of equilibrium bulk currents arise from
currents flowing near the sample edge.

How do these edge currents relate to the well-known edge
state picture [67] used to describe the quantum Hall effect?
There are several points to note: first, the edge states of
the QHE correspond to the classical chiral skipping orbits
described above; second, the oscillatory magnetic moment
depends on currents due also to skimming orbits; third, the
QHE describes a non-equilibrium situation in which electron
states acquire a drift velocity due to the influence of the Hall
electric field. As we touch on later in section 3.4, when
electron–electron interactions and impurity scattering are taken
into account these simple pictures of the current distribution are
substantially altered.

2.2. Experimental results

Not long after the availability of semiconductor-based 2D
electron systems, attempts were made to examine magnetic
quantum oscillations. Störmer et al [1] reported the first
observation of the dHvA effect in such a system in 1983. They
employed a SQUID magnetometer to examine a modulation-
doped GaAs/(Al, Ga)As heterostructure at 1.5 K, but needed to
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stack 4000 layers and used extremely slow acquisition rates to
obtain sufficient signal-to-noise ratio. Sample inhomogeneity,
leading to a phase broadening, was invoked to explain the
size of signal observed, which was much smaller than the ±1
effective Bohr magneton per electron predicted by theory for an
ideal system. In the same year, Fang and Stiles [68] reported
dHvA oscillations in a silicon inversion layer in fields up to
15 T. As was standard in measurements on 3D systems at that
time, they detected the magnetic moment m of the sample
using an inductive pick-up coil. This was placed above the
periphery of the gate electrode of a metal-oxide-semiconductor
field-effect device. Modulation of the gate voltage, and hence
ns, at frequencies up to 100 kHz gave a change in m, and
hence the magnetic flux linking the coil, inducing a measurable
voltage observed as peaks at certain values of ns. These
spikes were interpreted as the derivative of m with respect to
ns. In fact, improved SQUID magnetometry with gate voltage
modulation was developed by Meinel et al [2] in 1997, so that
a single-layer GaAs/(Al, Ga)As structure could be examined.
However potential complications of modulation techniques
(capacitive coupling, the requirement of sample gating, and
induced currents in the 2DES—see section 2.2.5) and the lack
of sensitivity of the SQUID method for magnetic moment
detection led to more direct methods being employed. Also
key to developments in this field was the increasing availability
of high quality 2DES.

Eisenstein et al [8, 6, 9, 69] were the first to employ
torque magnetometry (see section 1.1 for further details of
magnetometer design), with capacitive detection of the sample
motion, to analyse dHvA oscillations from GaAs/(Al, Ga)As
superlattice samples and a single-layer heterojunction, at 4 K in
fields up to 10 T. The idealized sawtooth-like dHvA waveform
was not seen in their samples, which had Hall mobilities, μH,
less than 8 m2 V−1 s−1 for the superlattices and 28 m2 V−1 s−1

for the single layer, but nevertheless quantitative information
could be extracted from the field dependence of the (roughly
sinusoidal) dHvA oscillations. They reported that the observed
oscillation envelope implied a Gaussian DOS with a field-
dependent broadening parameter � scaling as

√
B, but they

did not give details of their fitting procedure.
The torsion magnetometer technique was improved

by Templeton [10], who examined a GaAs/(Al, Ga)As
heterostructure with ns = 9.1 × 1015 m−2 and μH =
8 m2 V−1 s−1 at 4.2 K. The oscillations were again roughly
sinusoidal, characteristic of a small quantum lifetime, but the
amplitude approached 50% of the theoretical maximum at 4 T
in contrast with the findings of Eisenstein et al. Without further
studies, it is not clear if this was a true sample-dependent effect
or whether it was caused by difficulties in calibrating the earlier
magnetometers. The field dependence of the oscillations was
again used to extract an estimate of the DOS, and a Gaussian
broadening � = 0.85 meV (around 10 K) without a

√
B

dependence was found to fit the data well. This corresponds
to a quantum lifetime of about 0.8 ps compared with the
momentum relaxation time (the lifetime related to the mobility
μH measured in transport) of 3 ps.

Similar designs to Templeton’s, with various improve-
ments such as in situ adjustment and a balanced rotor, were

used extensively in later studies of the dHvA effect by the
present authors [51, 70–72]. Potts et al [51] were the first
to present a detailed numerical fitting procedure to analyse
dHvA oscillations. Data taken from a 10-layer 2DES (ns =
1.2 × 1016 m−2 and μH = 2.9 m2 V−1 s−1) yielded a best fit
to a model DOS which was Lorentzian in shape with a width
� ∼ 2.5 meV, or nearly 30 K, that was independent of B.
(Interestingly, unlike suggestions in some other experiments,
discussed later, the best fit was obtained with no background
DOS included.) The Gaussian form with width proportional
to

√
B only gave a good fit at low fields. Some evidence for

a temperature dependence of � was seen over the range 0.1–
4.2 K examined.

It is of course essential to a proper understanding of
the thermodynamic DOS in a 2DES to examine samples
with a range of mobilities, and in 1997 Wiegers et al [73]
examined, amongst other samples, a high-mobility (ns =
2.3 × 1015 m−2, μH = 230 m2 V−1 s−1) single-layer
GaAs/(Al, Ga)As heterojunction which showed a dHvA effect
at 1.2 K approaching the idealized sawtooth oscillations of
figure 3. Only a semi-quantitative analysis was attempted
on the relatively noisy data, but it was clear that the LL
broadening, of whatever form, was much smaller than in
previous samples, probably around 6 K.

Using cantilever-based magnetometry (see section 1.2),
Schwarz et al [74, 75] reported an impressive set of dHvA
measurements on two samples, with ns = 5.8 × 1015 m−2,
μH = 40 m2 V−1 s−1 and ns = 4.8 × 1015 m−2, μH =
140 m2 V−1 s−1. They examined the temperature range from
0.3 to 30 K. The lower-temperature data also showed induced
eddy current peaks. The high mobility (and about a factor
100 smaller sample sizes, ∼2 mm2, which will reduce the
effects of sample inhomogeneity) again resulted in almost ideal
dHvA oscillations, with amplitude approaching ±1 effective
Bohr magneton per electron. They reported that the amplitude
of the dHvA oscillations as a function of field agreed with
the Dingle formula; but since this formula is based on a
model of a Lorentzian DOS and applies to the fundamental
harmonic component alone, one should be extremely cautious
in using it for quantitative analysis. (It may nevertheless be a
reasonable approximation when kBT and/or � are comparable
with h̄ωc.) However, as we shall discuss shortly, they also
performed a quantitative analysis in which they were able to fit
the oscillations with a DOS consisting of a sum of a Gaussian,
with � varying as

√
B, and a field-dependent background

term. In a similar vein, Zhu et al [71] (using torsion-balance
magnetometry on large-area samples) also obtained sawtooth-
like dHvA in their two samples (ns = 4.4 × 1015 m−2,
μH = 50 m2 V−1 s−1 and ns = 3.1 × 1015 m−2, μH =
78 m2 V−1 s−1) examined from 0.05 to 1 K. The work of
both groups showed that the sawtooth did not quite have the
dramatic asymmetric shape of figure 3 with a sharp jump on the
high-field side of each sawtooth, but instead had a noticeably
finite slope. To explain this, both Schwarz and Zhu considered
a background DOS between LLs, that is, a density of states

ρ(ε) = ξ
m∗

π h̄2
+ (1 − ξ)ρL/G(ε), (26)
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Figure 7. Comparison between theoretical magnetization (solid line) for a Lorentzian DOS � = 0.05 K with no background, and
experimental data from reference [77] figure 6. The number density chosen was ns = 3.20 × 1015 m−2. As in reference [77], the theory has
been adjusted at higher fields to correct for the influence of an eddy current peak around 2.6 T.

where the first term is an energy-independent background DOS
and the second term represents the remaining Lorentzian or
Gaussian-broadened LLs as in (5) and (10) (see the bottom
left panel of figure 5). (A Gaussian-plus-constant DOS
was suggested by Gornik et al [76] to explain heat capacity
measurements in samples of comparatively poor mobility.) The
quantity ξ parametrizes the fraction of states between LLs.
Zhu et al [71] used a full fitting procedure (a development of
the method of Potts et al [51]) to reproduce accurately their
experimental results, using the broadening � and background
ξ as the main adjustable parameters. They deduced that either
a Lorentzian or a Gaussian DOS would fit the results equally
well, with broadening around 0.2 or 0.3 eV, as long as the
background term ξ was included. This varied from 0.14
to 0.49, depending on sample conditions, for the case of a
Gaussian DOS, and 0.0–0.28 for the Lorentzian. The smaller
value in the latter case reflects the greater intrinsic spread of
a Lorentzian. In contrast, Schwarz et al [75] reported best
fits to their data with a field-dependent Gaussian broadening,
� = 0.08 meV

√
B with B in tesla, and also deduced that the

background term was proportional to filling factor ν (inversely
proportional to field) with values of ξ ∼ 2.3 × 10−2 ν. They
interpreted this as evidence of the influence of edge states in
their samples.

How should one interpret these apparently contradictory
conclusions about the DOS? A mundane explanation is simply
that the data are not always sufficiently good to extract the
DOS accurately. A more interesting possibility is that high-
mobility samples can indeed show different DOS depending
on sample growth or on experimental conditions. An attempt
to explore these possibilities was made by Usher et al [72] who
performed an analysis of Zhu’s data using both DOS models.
For that data set at least, they concluded that to get the best
fit over a wide field range a constant value of ξ with a field-
independent Gaussian broadening � was required. It was also
pointed out that fits were made over a much larger number of
dHvA oscillations in the data of Zhu et al compared with the
data of Schwarz et al (ten or twenty oscillations versus five)
and this is crucial in deciding between different DOS models:
a stringent requirement on the fit is that it can reproduce the
dHvA envelope over a large change in amplitude.

A recent work of Wilde et al [77] extends and supports
the earlier findings of Schwarz. They present dHvA data
from three samples of varying mobility (μH = 70, 140
and 900 m2 V−1 s−1) at a temperature of 0.3 K showing
comparisons with theory for a

√
B Gaussian DOS with ν-

dependent background. In all cases they show convincing
agreement with experiment. However even here it is not
clear that the data, which are among the best available in the
literature, can be used to argue for a particular DOS model.
For example, in figure 7 we show a comparison of their
published dHvA data in the high-mobility sample (sample bo#
1121 in their figure 6) and theory using a Lorentzian DOS,
with no background states included. Evidently the fit with
the data is quite comparable to their alternative DOS model.
For this sample its very high quality means that virtually
any sufficiently narrow broadening function will fit the data,
and the effect of kBT is dominant. However, we find that
a Lorentzian also fits data from the other, lower mobility,
samples equally well. To distinguish between the models,
measurements extending to lower field where the envelope of
the oscillations becomes smaller would be useful. In other
words, it is advantageous to measure with the cyclotron energy
h̄ωc ranging from greater than to rather less than �. For a
sample of such high quality (� ∼ 0.05 K assuming Lorentzian
broadening) this is completely impractical, requiring such
small fields that torque magnetometry is not viable. However,
it would be practical instead to examine the temperature
dependence of the oscillations for kBT covering this energy
range.

It seems that there are quite subtle differences, at least in
terms of their influence on magnetization, in the overall DOS
produced by some apparently quite different models. Two
avenues of research are clearly required: firstly, theoretical
justification of these models, which is lagging behind their
eager uptake by experimentalists, needs to be improved.
Secondly, to decide experimentally between the competing
pictures it is vital to see further measurements which cover a
systematic range of sample mobilities and are made over the
widest possible range of field and (in particular) temperature.

Usher et al [72] also suggested an alternative explanation
for the finite high-field slope of the sawtooth oscillations they
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observed: only if the 2DES is completely isolated, so that its
density cannot change in response to the changing magnetic
field, is ns fixed and the idealized oscillations take the sawtooth
form. This possibility has been considered by several authors
in the past [78–80]. If ns itself were allowed to oscillate with
field, the high-field slope would become finite. The extreme
case of this would be a fixed chemical potential, independent
of field, which would produce sawtooth dHvA in which the
low-field jumps are abrupt [81]. It was hypothesized that a real
system is somewhere between these two limits. We discuss this
idea further in section 2.2.3.

Zhu et al [71] additionally examined the effect of
illuminating their samples with a red light-emitting diode,
which is known to increase the number density and mobility
of the 2DESs, due to persistent photoconductivity. After
illumination both samples displayed these expected increases,
and in a δ-modulation-doped sample this was accompanied
by a commensurate reduction in the LL broadening deduced
from dHvA. However, surprisingly, the bulk modulation-doped
sample showed an increase in width after illumination. In
fact, as Zhu et al pointed out, this is not actually a counter-
intuitive result: firstly, it has been known for many years that
the transport and quantum lifetimes measured by the Hall and
dHvA effects respectively are very different [82]. Secondly,
it underlines the fact that extended and localized states in
these systems in general sample the disorder in very different
ways—thus even a comparison of the quantum lifetime from
dHvA and SdH oscillations do not necessarily agree. In
Zhu’s case the illumination reduced the disorder experienced
by the extended states (which are the only ones influencing
the transport mobility) while increasing that experienced by
the localized states (to which dHvA measurements are also
sensitive). The results of Ruhe et al [18] also point to the
non-equivalence of these lifetimes, but further show that the
differences can be quite extreme: by varying sample density
with a gate and measuring transport and dHvA in the same
sample they showed that the dHvA amplitude can be almost
unaffected even as μH is varied from 10 to 50 m2 V−1 s−1.
However, they assert that the quantum lifetime in dHvA should
‘not be interpreted as a scattering time of electrons at the Fermi
energy as is done in the case of SdH’ but that it is a ‘measure for
the broadening of the Landau levels and considers all occupied
levels’. In fact both dHvA and SdH oscillations are governed
by change in occupancy of electrons around a range kBT
or h̄ωc about μ; it is the distinction between extended and
localized states that underlies the difference between dHvA
and SdH quantum lifetimes.

2.2.1. Sample inhomogeneity. Although an intrinsic DOS
has been most commonly used to explain the shape and
field dependence of dHvA oscillations, sample inhomogeneity
could be important, particularly in high-mobility samples.
Similar ideas have been used in the past to describe apparent
LL broadening observed in 3D systems [24, 83, 84]. The
simplest model is that of a sample comprising a number of
independent portions of slightly different number density, each
of which contributes to the total dHvA magnetic moment.
(Thus the number density in each region is constant and μ

Figure 8. Total dHvA magnetic moment versus field (solid black
curve), for zero temperature and no scattering, of a GaAs 2DES
comprising five regions differing by ±1% and ±2% centred on a
density 4.00 × 1015 m−2, as for figure 3. A finite width of the
downward jumps of magnetization is produced compared with a
single ns (broken red curve), as well as a reduction in amplitude. The
curve becomes smoothed out as more regions are considered.

will oscillate independently in each region.) To illustrate this,
figure 8 shows the total magnetic moment of an otherwise
perfect sample (at zero temperature) of five equal regions with
ns differing by just ±2%. A finite high-field slope of the
sawtooth oscillations is thus consistent with a small sample
inhomogeneity. A further consequence is a field-dependent
damping of the oscillation amplitude. This can be extended
to a distribution of number densities, arising from what can
be thought of as a multi-domain sample. Essentially, the slight
phase difference of the oscillations from each domain results in
a smearing out of the sharp drops in magnetization. From (21),
a (slightly more realistic) uniform distribution of number
density ns ± �ns will result in a width �B/B = �ns/ns

of the downward jumps of magnetization at the field B . The
degree of inhomogeneity of actual samples is not necessarily
easy to quantify; one might test if small samples give more
ideal dHvA oscillations than larger ones taken from the same
wafer (or measure their SdH and Hall number densities), but
the scale of the inhomogeneity might be too small to detect
with samples of usable size.

An arguably more realistic description of sample
inhomogeneity is to assume that μ is constant throughout the
2DES, but that there are disorder induced lateral variations,
as illustrated in figure 9, which cause ns and hence the
LLs to move up and down in energy across the sample.
(Equivalently, the filling factor can be thought of as position
dependent.) As a consequence, when averaged across the
sample, the DOS of each LL has an associated mean value
plus a broadening. A helpful interpretation of the broadened
DOS produced by inhomogeneities is in terms of a ‘phase
smearing’ or ‘dephasing’ concept: a position-dependent filling
factor means that each portion of the sample contributes to
the total oscillatory magnetic moment with a slightly different
phase, thus reducing the oscillation amplitude. This qualitative
argument of course says nothing about the precise form of the
resultant DOS without further assumptions. However, it is

13



J. Phys.: Condens. Matter 21 (2009) 103202 Topical Review

Figure 9. Schematic of the effect of disorder on the Landau levels
(assumed spin-degenerate) of a 2DES. The energy of the levels varies
randomly with position within the 2DES. The dashed red line is the
electrochemical potential μ (assumed constant throughout the 2DES)
corresponding to a filling factor ν = 4. The position dependence of
the levels results in the broadening of the density of states as
discussed in the text.

interesting to note that although the dHvA effect will reflect
the apparent DOS due to inhomogeneity, in contrast cyclotron
resonance is expected to measure the intrinsic width of the LLs
due to scattering alone [85]. This is because, if the scale of
inhomogeneities is larger than the cyclotron radius, cyclotron
resonance causes a spatially ‘vertical’ transition between LLs,
which is the same, independent of position.

In fact, the scale of inhomogeneities is interesting in its
own right. As mentioned above, we have effectively assumed
that the characteristic length scale of any inhomogeneities
is large compared with the classical cyclotron radius of the
highest LL. In a series of papers [83, 84, 86–88] Watts
showed a dephasing method to be an appropriate way to
calculate the influence of any smoothly varying long-range
scatterer on the dHvA effect amplitude. Watts argued that
this will always (for 3D metals) result in a Dingle-type field
dependence of the dHvA amplitude, which would equivalently
be interpretable as a Lorentzian DOS, irrespective of the
details of the inhomogeneities as long as they are statistically
independent. (Furthermore, he suggested that conventional
scattering can in fact be thought of as equivalent to dephasing.)

A similar interesting approach to this phase smearing
concept has been put forward by Harrison and Singleton [89].
Although their model was specifically for the dHvA effect in
inhomogeneous alloys, it could apply equally to a 2D system
with inhomogeneous number density. They also find that
under quite general assumptions of dopant atoms in a host
material, the resultant statistical inhomogeneity leads naturally
to an apparent Lorentzian broadening of the LLs without any
electron scattering effects. Thus one can envisage that in a 2D
system, the random distribution of dopant atoms can lead to the
same behaviour. As a crude estimate of the importance of this
effect, consider a modulation doping density of 4 × 1015 m−2

with a spacer layer of 30 nm. If an electron consequently
senses the potential of dopants in a circle of radius say 90 nm,
i.e. about 100 dopant atoms, this would result in a statistical
variation of about 10%.

Closely related to these simple models of inhomogeneity,
other possible theoretical descriptions of the QHE, not
invoking localized states, have been proposed by a number
of authors. Woltjer [90–92] has investigated the effects of
sample inhomogeneity of a few per cent, which leads to a
position-dependent local filling factor and resistivity tensor
ρ(x, y) = ρ(ν(x, y)). The Hall resistance Rxy , expressed
as an average of the Hall field and longitudinal current, mixes
the transverse and longitudinal resistivity tensor components
and was shown to lead to plateaux in Rxy which nevertheless
remain accurately quantized. The influence of inhomogeneities
in two-dimensional systems was also used [93] to provide an
alternative explanation for the apparent large field-independent
background DOS in magnetization and other experiments
(capacitance, heat capacity), and again a few per cent variation
in electron density was sufficient to explain observations.

2.2.2. Spin-splitting. The influence of electron spin was
ignored in writing (2), which actually takes the form

ε� = h̄ωc
(
�+ 1

2

) ± 1
2 g∗μB B (27)

where g∗ is the electron g-factor and μB = eh̄/2m0 (with m0

the bare electron mass) is the Bohr magneton. This means
that the dHvA effect is in principle influenced by electron
spin, but for it to be visible requires that the spin-splitting
is comparable to or greater than � and kBT (and hence the
oscillations have significant harmonic content). For a free
electron g∗ is almost exactly 2, and 1

2 g∗μB B is then exactly
equal to h̄ωc. Although h̄ωc is about 15 times larger in a GaAs-
based 2DES, suggesting that the spin-splitting is comparatively
small, the value of g∗ depends on the parameters of the
heterostructure, and is known to be field- and ns-dependent
due to exchange enhancement. For typical densities and high
mobility the splitting becomes sufficiently enhanced to be
observed in moderate fields, showing up in dHvA as additional
jumps at odd filling factors (see for example figure 10).

For small LL broadening and low temperature, the jump
�m in magnetic moment per electron is roughly equal to the
corresponding energy gap divided by the field B , so that the
spin-splitting energy can be estimated. Using this method Zhu
et al [71] for example found a g∗ value of ∼4.8 at about 7 T
(ns = 4.9 × 1015 m−2, μH = 130 m2 V−1 s−1) in one sample
(which was bulk modulation doped), but only ∼2 in a slightly
poorer mobility δ-doped sample. (The measurements were
after sample illumination which had the effect of suppressing
otherwise dominant eddy currents.) These results are in
stark contrast to those of Wiegers et al [73] on a δ-doped
sample of similar characteristics (ns = 4 × 1015 m−2,
μH = 100 m2 V−1 s−1) where jumps at all the odd filling
factors ν from 3 to 13 were reported, with similar strength
to the even filling factors. Spin-split odd filling factors have
also been reported by Schwarz et al [75] and they extracted a
value of g∗ of 5 from the dHvA jump at ν = 3 occurring at
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Figure 10. dHvA features at odd filling factors ν = 3 and 5 in a
2DES with ns = 4.9 × 1015 m−2 and μH = 130 m2 V−1 s−1 at a
temperature of 540 mK. After Zhu et al [71].

about 6.5 T in their sample (ns = 4.75 × 1015 m−2, μH =
140 m2 V−1 s−1). By examining the size of the odd filling
factors over a wide range of field (in a very high-mobility
sample, μH = 900 m2 V−1 s−1 with ns around 3 × 1015 m−2),
Wilde et al [77] were able to extract the field dependence of
g∗, which was found to vary from 7 at ν = 1 to 3 at ν = 15.

2.2.3. Constraints on number density. In interpreting dHvA
data in a 2DES it is natural to assume that the number
density ns is a fixed quantity. However, this basic assumption
has been questioned by a number of authors in the context
of GaAs/(Al, Ga)As-based 2D systems, and has profound
implications beyond just the dHvA effect. A number of authors
have considered that quantum Hall plateaux can be caused by
such an effect [78, 94].

A mechanism by which the number density might vary
is if the 2DES can exchange carriers with another charge
reservoir. Xu [78] made self-consistent Poisson–Schrödinger
calculations of the electrostatics of single quantum wells. He
found that, for samples with a thin enough spacer thickness
and large enough modulation doping, Landau quantization
will lead to oscillations in ns (and hence oscillations in the
confining potential) as charge is transferred between the 2D
channel and dopant layer. The value of μ in the 2D channel
can be thought of as ‘pinned’ to its value in the dopant
layer, and the subband energy levels will oscillate with respect
to it as charge flows in or out. Thus, the dopant layer
acts as an electron reservoir in contact with the 2DES. An
important consequence of this is that it leads to plateaux
in the Hall resistance and will therefore contribute to the
QHE. Similar results were found for one- or two-subband
occupancy. Observations of oscillations in the recombination
energy of electrons with photoexcited holes in a δ modulation-
doped heterojunction [95] support this idea. Also, cyclotron
resonance data [96, 79] strongly indicate oscillations in ns, and
have been found to agree well with ns as calculated classically
using the measured Hall effect in the same samples [79].

Interesting measurements were reported by Schaapman
et al [97], who examined the dHvA effect in a GaAs/(Al,

Ga)As heterojunction containing two subbands. They found
oscillations which were not periodic in inverse field and
departed from the ideal sawtooth form, presenting triangular-
shaped oscillations of reduced amplitude (around 0.5 μ∗

B
per electron), which they explained using a magnetic-field-
dependent self-consistent model of the electrostatics of the
2D system. The wavefunction of the second subband is
particularly sensitive to changes in the potential. Further
experimental and theoretical evidence to support the idea of
a magnetic-field-dependent 2D electron density in a single
subband comes from magnetophotoluminescence studies on
modulation-doped asymmetric GaAs/(Al, Ga)As quantum
wells [98]. Recently, the electron reservoir model has been
proposed to explain features of magnetoplasmon dispersion in
high-mobility 2D electron systems [99].

In summary then, there is growing evidence that
oscillation in number density with magnetic field is a
general feature of III–V semiconductor quantum wells and
heterojunctions, and that they should be treated as open
systems with a degree of coupling with some outside
reservoir(s). A simple way of modelling this situation (see
references [81, 56] for example) is to consider a 2DES in
thermodynamic equilibrium with a reservoir having a constant
DOS Dres. The total electron density N is constant and can be
expressed as

ns(μ)+ Dresμ = N (28)

where μ is the common chemical potential. If Dres is zero,
μ will oscillate as previously discussed in section 2.1.4 to
maintain constant ns, while if Dres → ∞ then μ will be fixed.
For finite Dres it is easy to show from (28) that the high-field
side of the sawtooth oscillations of μ, which has infinite slope
in the ideal case, now has a finite slope of approximately

�μ/�B ≈ gLν/Dres B (29)

with gL the LL degeneracy (3). The effect of two extremes
of a pinned ns or pinned μ on dHvA oscillations are nicely
illustrated in figure 1 of Harrison et al [56]. (In this case the
charge reservoir is provided by another portion of the Fermi
surface of a quasi-two-dimensional metal.) We should note
here that the DOS model (26) treated earlier does not assume
contact with a separate reservoir (all the electrons comprise a
single 2D subband), but it will have a similar effect to a partial
pinning of μ produced by a small value of Dres.

2.2.4. Multi-subband samples. Alexandrov and Bratkovsky
[100–102] reported the interesting fact that, in a 2DES
with more than one occupied subband, the requirement of a
constant total number density would lead to extra frequency
components in the dHvA effect. In the 3D case, different
extremal orbits of the Fermi surface each contribute additively
to the total dHvA signal, but in 2D the oscillations due to each
subband are effectively coupled together by the requirement
of fixed total ns. The reason for this is that oscillations
in μ required to keep constant total number density must
necessarily result in oscillations in the occupancy of the
individual subbands. (A clear illustration of this fact in
the context of SdH oscillations was given by Portal et al
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[103].) This nonlinear coupling thus results in sum and
difference combination frequencies of both the fundamental
and the harmonic components of the Fourier spectrum of the
oscillations. Shepherd et al presented dHvA evidence for this
effect [80] in a three-subband InGaAs quantum well. (Weak
combination frequencies were also found in SdH data taken on
a Hall bar fabricated from the same material, indicating that
contacts to the 2DES did not result in complete pinning of
μ in the well.) The theory of the effect was studied in some
detail by Champel [37] who also examined the influence of an
electron reservoir as described in section 2.2.3 and derived an
analytic formula to describe the dHvA harmonic components.
Despite some disagreement in the literature as to the derivation
of analytic formulae [104–106], the essential physics behind
the effect remains clear.

As for the single-subband case, it is by no means certain
that the total number density is constant in a multi-subband
sample and Champel’s results [37] are useful here. As also
discussed in section 2.2.3, experimental investigations by
Schaapman et al [97] of dHvA in a two-subband sample found
evidence that ns oscillated with field, and this possibility had
been discussed previously by Shepherd et al. Only in the
extreme limit of fixed μ (with respect to the subband energies)
would the dHvA oscillations from each subband be decoupled,
and single dHvA frequencies from each subband be observed.
Thus a systematic study of multi-subband samples can reveal
the degree to which μ is pinned in a real 2DES.

2.2.5. Equilibrium magnetization measurements of the
fractional quantum Hall effect. For a review of the
fractional quantum Hall effect (FQHE), see Chakraborty and
Pietiläinen [107]. The phenomenology of the FQHE is the
same as that of the integer QHE: mobility gaps in the DOS lead
to minima in ρxx accompanied by plateaux in ρxy . However
the origin of the mobility gaps is different: in the case of the
integer QHE it is LL quantization, but in the case of the FQHE
it is the electron–electron interaction. Consequently, FQHE
energy gaps are at least ten times smaller, and observation
of the equilibrium magnetization oscillations associated with
the effect represents a significant experimental challenge.
Calculations of the energy gap, �, give � = K e2/4πεlB

(lB = (h̄/eB)1/2 the magnetic length) with K ≈ 0.1 for
ν = 1/3 and 2/3 [108].

There has been one report of a measurement of the
equilibrium magnetization of the FQHE [3]. The authors
gate-modulated the number density of a high-mobility 2DES
(ns = 0.97 × 1015 m−2, μH = 800 m2 V−1 s−1 at 0.3 K),
and measured ∂M/∂ns using a superconducting pick-up loop
surrounding the 2DES, connected to a low-noise SQUID.
By sweeping the gate voltage at fixed magnetic field they
were able to reach LL filling factors below 1/3, at magnetic
fields up to 10 T. In addition to oscillations at odd and
even integer filling factors, features were also observed at
ν = 1/3, 2/3, 4/5, 4/3, 8/5 and 5/3. They found good
quantitative agreement in the size of the magnetization jump
at ν = 1/3 compared with calculations of � [108].

It has since been established [4] that changing the number
density of a 2DES by sweeping a gate induces non-equilibrium

Figure 11. The Fock–Darwin spectrum of a quantum dot with
parabolic confinement, subjected to a magnetic field. The
characteristic energy of the dot is 1 meV and h̄ωc is 0.4 meV T−1.
Some of the levels are marked with their quantum numbers (�, m).
At high magnetic fields, levels denoted by solid black lines converge
on the lowest LL (black dotted line); red long-dashed lines converge
on the first excited LL (red dotted line); blue short-dashed lines
converge on the second excited LL (blue dotted line).

circulating currents (the subject of section 3 of this review)
which swamp the dHvA signal. It would seem possible that
these might be responsible for some of the FQHE features
observed.

2.2.6. Magnetization measurements of quantum dots and
quantum wires. The energy spectrum for electrons confined
within a 2D parabolic potential, forming a quantum dot, with a
magnetic field applied perpendicular to the lateral confinement
directions, is the Fock–Darwin spectrum [109, 110]:

E�m = (2�+ |m| + 1)h̄

[
ω2

0 + 1

4
ω2

c

]1/2

− m

2
h̄ωc, (30)

where � = 0, 1, 2, . . . ,m = 0,±1,±2, . . . , and h̄ω0

is the characteristic energy associated with the parabolic
confinement. This spectrum is shown in figure 11. At zero
magnetic field the energy levels are those of the confining
potential, each level including states with the combinations
of � and m such that j = 2� + |m| is the quantum number
defining the level energy, E j = j h̄ω0. Combinations of �
and m for a few of the levels are shown in the figure. When
the magnetic field is applied the degeneracy of these levels is
lifted and the states with different values of � and m follow
different trajectories, until, in the limit of high magnetic field,
when the magnetic length becomes much smaller than the
confinement length of the quantum dot, the spectrum tends
to the 2D case of equally spaced LLs (the dashed lines in
the figure). The equilibrium magnetization of a quantum
dot with parabolic confinement has been calculated for non-
interacting electrons [111] and including interactions [112].
dHvA-like oscillations occur consisting of upward pointing
cusps and shallow minima (see for instance figure 2 of [111]),
the cusps occurring when all the levels tending towards a
given LL become depopulated. The oscillation amplitude
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(in effective Bohr magnetons per electron) is substantially
smaller than in the 2D case. Superimposed upon this are
high frequency Aharonov–Bohm-like oscillations. Schwarz
et al [75] measured the magnetization of an array of 106

quantum dots of average diameter 550 nm, estimated to contain
∼230 electrons per dot, and compared it with that of the
unprocessed 2DES. The dots were integrated into a GaAs
cantilever magnetometer (see section 1.2). The 2DES showed
the expected sawtooth dHvA oscillations, approaching the
ideal amplitude of ±1 effective Bohr magneton per electron. In
contrast, the quantum dots showed only two weak oscillations,
which were much more sensitive to temperature than the 2DES
dHvA. They identified these features as occurring when the
ν = 2 and 4 LLs of the quantum dots depopulate, though the
ν = 4 feature was at an unexpectedly low magnetic field.

There has also been one report of magnetization
measurements of quantum wires [113] and a theoretical
study [114]. In the experiments, the magnetization oscillations
resembled those of a 2DES with reduced mobility and reduced
density compared with the host material; the oscillations did
not correlate well with the model calculations. These are areas
that clearly need further investigation.

3. Non-equilibrium induced currents

In 1980 von Klitzing et al [115] reported the discovery of the
quantum Hall effect: that the Hall e.m.f. in a 2DES shows
plateaux centred around integer values of the filling factor ν.
Crucially, the corresponding Hall resistance (i.e. transverse
magnetoresistance) at these plateaux takes the quantized values
h/νe2. In such measurements, a longitudinal current flows
along a bar of 2DES material through contacts at either end,
and the (transverse) Hall e.m.f. is measured using contacts at
either side of the bar. In this section we describe how the
quantum Hall effect can be measured using magnetometry,
through the detection of circulating currents which are induced
in a ring, disc, or (more commonly) square-shaped 2DES by a
time-varying perpendicular magnetic field.

A schematic representation of the experiment is shown
in figure 12 in which a sweeping magnetic field produces
an e.m.f. around the perimeter of the 2DES, resulting in
a circulating current I whose associated magnetic moment
I A (A the area, πR2, of the 2DES) is detected by the
magnetometer. (The real current distribution will differ in
several respects from this simple picture, as discussed in
section 3.4.) The current, flowing in a magnetic field, is
subject to the Lorentz force which causes a build-up/depletion
of charge towards the edge/centre of the disc. This results in a
(non-uniform) radial Hall electric field E.

Although this experiment essentially measures the
magnetoresistance, it has several unique features. First, it
is contact free. In conventional QHE experiments on Hall
bars, dissipative hot-spots are known to occur at the current
contacts, while at low currents the QHE is dissipation free
elsewhere [116, 117]. At higher currents, the breakdown of
the non-dissipative QHE occurs first at these hot-spots and
gradually permeates into the rest of the 2DES. Magnetization
measurements therefore enable us to study transport in a

Figure 12. Highly schematic conception of induced eddy currents in
a disc-shaped 2DES, radius R. A circulating current I flows around
the sample perimeter. This current is assumed to flow over a
characteristic width w so the magnitude of the current density is
j = I/w. In the quantum Hall regime where σxx → 0 the electric
field E is virtually at right angles to the current flow, being the Hall
field. The redistribution of charge shown corresponds to the case in
which B and ∂B/∂t are parallel (an up-sweep).

virtually dissipation-free environment, and to investigate the
intrinsic QHE breakdown avoiding the extraneous effects of
contacts. Second, induced currents are excited by applying
a fixed e.m.f. around the sample (produced by sweeping the
magnetic field at a constant rate). In contrast, conventional
measurements on Hall bars use constant current excitation.
These two approaches yield fundamentally different results
in systems in which dissipation increases with temperature
(the QHE driven to high-current breakdown is such a system).
Driving a constant current through the system can lead to
thermal runaway [118, 119], but exciting the system with a
constant e.m.f. does not (see equation (C.14)). Consequently
induced currents can probe the breakdown regime more
controllably. Third, the geometry of the 2DES in induced
current measurements is unusual: it has one edge, in contrast
to a Hall bar that has two, or a Corbino sample that has none.

Experiments are typically conducted at magnetic field
sweep rates between 0.1 and 10 mT s−1 and at these sweep
rates induced currents only become detectable under the
conditions of the QHE—near integer (or some fractional)
filling factors—and at temperatures sufficiently low for the
quantum Hall plateau to be well quantized and the associated
minimum in the magnetoresistance sufficiently deep. Typically
this means below 1.5 K for the integer QHE and below
100 mK for the fractional QHE. An example is shown in
figure 13. The induced currents are easily distinguished from
dHvA oscillations because they reverse polarity when the
magnetic field sweep direction is reversed. It is not common
to see both dHvA and induced currents reported in the same
experiment because induced currents rapidly increase in size
as the temperature is reduced and overwhelm the dHvA signal.
However, a few examples of both can be found in the literature,
for example in figure 2 of Potts et al [51] and figures 2 and 3
of Schwarz et al [75].

It is also possible to induce currents by sweeping the
2DES number density at fixed magnetic field [4]. In these
experiments a square 2DES with four ohmic contacts and
a gate is placed on a magnetometer and the magnetization
and electrical transport measured simultaneously. Induced
currents, which reverse when the gate voltage sweep is
reversed, are observed in the magnetization. The gate voltage
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Figure 13. Magnetic moment versus magnetic field for a 2DES with
ns = 4.4 × 1015 m−2 and μH = 50 m2 V−1 s−1, at T = 50 mK.
Peaks at integer filling factors ν = 3, 4, 5, 6, 8, 10 and 12, whose
polarity reverses when the sweep direction is reversed, are caused by
induced currents. In this sample, the much smaller equilibrium
magnetization (dHvA) oscillations are completely masked by these
non-equilibrium features.

causes electrons to flow into/out of the 2DES via the ohmic
contacts. This flow is initially towards the centre of the
sample, but the Lorentz force rapidly channels the currents
entering the 2DES into tangential induced currents. The
authors also observe a pronounced hysteresis in the shape of
the magnetization versus filling factor, which they model in
terms of the change in area of compressible and incompressible
regions in the 2DES as a function of filling factor. A similar
hysteresis is sometimes observed between different magnetic
field sweep directions, the mechanism for which is discussed
in section 3.4.2.

It is important to recall, as first noted in the context of
the QHE by Macdonald et al [120], that unlike the 3D case
the Hall electric field and the current density are necessarily
highly non-uniform across a Hall bar and are accompanied by
both edge charge and a redistribution of the charge density in
the bulk. Similar considerations apply to the case of induced
eddy currents, as discussed in section 3.4.1.

3.1. General I –V characteristic of induced currents

A typical plot of magnetic moment peak height (a measure
of maximum current) versus magnetic field sweep rate (a
measure of induced e.m.f.) is shown in figure 14. This plot,
which can be thought of as an I –V characteristic, may be
linear in samples of relatively low mobility and at temperatures
above ∼1 K (see section 3.1.1), but is highly nonlinear at
low temperature, even down to the slowest sweep rates used
(∼1 × 10−4 T s−1). The induced e.m.f. is incapable of
increasing the magnetic moment above a saturation value ms

regardless of sweep rate. Only at elevated temperatures and
in low-mobility 2DES does the apparently linear regime at
low currents become accessible. The nonlinear behaviour
has been interpreted in various ways, but is believed to
be a manifestation of high-current breakdown of the QHE,
discussed in more detail later.

Figure 14. Magnetic moment versus magnetic field sweep rate for
the induced current at ν = 6 in figure 13, equivalent to the I–V
characteristic of the 2DES.

3.1.1. Simple model for the linear regime. In the simplest
model [121] the azimuthal induced electric field Eφ at
radius r due to the change of flux �(r) linking a circular
sample produces a circulating current density Jφ = Eφ/ρxx .
Integration yields a total induced moment in a circular sample
of radius R

m = π

8

1

ρxx

dB

dt
R4. (31)

(The numerical prefactor is modified for a square or rectangular
sample.) Measurement of the total magnetic moment m thus
gives information about the resistivity of the 2DES [122].
Peaks in the eddy currents are therefore seen around both
integer [123] and fractional [124] filling factors, where minima
in ρxx occur. Equation (31) can form the basis for measuring
the resistivity of the ‘zero-resistance’ QHE state—if the
induced moment versus sweep rate is linear. Morris et al [121]
examined induced currents at ν = 2 and 1.25 K in a GaAs/(Al,
Ga)As heterojunction 2DES (ns = 1.4 × 1015 m−2 and μH =
30 m2 V−1 s−1 at 1.5 K) using a calibrated magnetometer.
A linear relationship between the magnetic moments of the
induced currents and the magnetic field sweep rate was seen
(figure 15), as predicted by the model, except for a slight
reduction at the largest sweep rates used (∼5 mT s−1). A value
of ρxx of (1.9 ± 0.1)× 10−4 �/� was deduced. Furthermore,
Morris was able to examine the R4 size dependence predicted
by (31) in some detail. In fact, discs and ring-shaped samples
with inner radius R1 and outer radius R2 were examined, which
would yield a magnetic moment scaling as R4

2 − R4
1 according

to (31). A plot of the magnetic moments of the induced current
peak at ν = 2 versus the sample geometry term at a magnetic
field sweep rate of ∼2.36 mT s−1 was indeed found to be
linear. From the line of best fit (effectively an average for all
the samples examined) the value of the minimum in ρxx was
calculated as (1.9 ± 0.3)× 10−4 �/� at 1.25 K.

The same procedure, although with different assumptions
made about the distribution of current within the sample (an
edge-weighted current distribution suggested by MacDonald
et al [120]), and so with a different constant of proportionality,
was used in early work by Eisenstein et al [8] for a 172-layer
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Figure 15. The ν = 2 eddy current peak for a 2DES measured by
Morris et al [121]. It shows linear increase of peak size with sweep
rates of 5.91, 2.36, 1.18 and 0.59 mT s−1 (forward and reverse
directions). A background slope on the magnetometer signal has
been subtracted from the raw data, which have also been modified
using a sweep-rate-dependent shift in magnetic field to allow for
magnet time constant.

2DES at ν = 4 (ns = 7.1 × 1015 m−2 at T = 0.23 K). They
found a resistivity of 10−6 �/� at about 1.8 K. Measuring a
resistivity this small in a conventional transport measurement
would be a significant experimental challenge.

Morris et al [121] found (31) to be a good description of
both the linear sweep rate and sample size dependence, but
at lower temperatures, and in samples of better mobility, it
no longer applies. Experimentally, it fails in two ways: first,
the increase of m with sweep rate is no longer linear, but
saturates—an effect which was attributed [123] to an eventual
breakdown of the QHE, leading to an increase of ρxx . Second,
if the sweep rate is abruptly stopped in the centre of an eddy
current peak, the magnetic moment does not immediately drop
to zero as implied by (31), but decays gradually with time. The
nature of this decay has proved very informative as we will
now discuss.

3.2. Lifetime of induced currents in the QHE

In early experiments the persistence of induced currents when
the magnetic field sweep was stopped at integer ν was observed
and single-exponential decays with time constants of 300 s
(in a 172-layer 2DES, ns = 8.2 × 1015 m−2, ν = 4
at T = 0.4 K) [7] up to 3.5 h (in a single-layer 2DES,
ns = 3.6 × 1015 m−2, ν = 2 at T = 40 mK) [122] were
reported. The decay time τ was explained in terms of discharge
of the (edge-weighted) Hall electric field, not included in
deriving (31) which ignores the Lorentz force acting on the
current. This force causes a build-up/depletion of charge at the
centre/edge of the sample, and consequently supports the radial
Hall electric field. Although not quoted by [122], including this
effect (see appendix C) yields

τ = Cw/σxx , (32)

where C is the capacitance per unit length of the edge and w is
the effective width of the capacitor (the distance over which the

Figure 16. Decay of the induced current at ν = 2 for a 2DES with
ns = 1.7 × 1015 m−2 and μH = 200 m2 V−1 s−1, at T = 88 mK. The
upper inset is a log–log plot of the decay from 100 s, demonstrating a
power-law dependence. Having subtracted this power-law
dependence from the data, the lower inset (a log–lin plot) shows an
approximately exponential initial decay.

Hall voltage is mostly dropped). The energy stored inductively
was found to be at least four orders of magnitude smaller than
that stored in the capacitor and was therefore neglected [122].
Equation (32) suggests that another approach to measuring
dissipation in the QHE, which does not rely on the linearity
of the I –V curve, is to measure the decay of the induced
current with time. From the decay times of the induced currents
observed in these experiments, one can infer resistivities as low
as 10−14 �/� from (32).

The early experiments had significant limitations: Haava-
soja et al [7] used a relatively low-mobility multilayer sample;
and the decays of Jones et al [122] could only be tracked
for a limited time because of instrumental drift. A more
recent study using a more stable cryogenic system and low-
drift electronics [12] was able to follow the decay in a high-
mobility 2DES for over one day, with no significant drift [125].
The result (figure 16) was the observation of two distinct decay
regimes: an initial fast decay (lower inset), possibly single
exponential in form with time constant ∼30 s, followed by a
much slower decay (upper inset), of power-law form, I ∝ t−n

(with n typically ∼0.07). This result implies that the resistivity
is continually decreasing as the circulating current decreases.
The authors inferred a resistivity of 4 × 10−15 �/� after
12 h of decay. The picture suggested by these results is as
follows. The initial e.m.f. provided by the sweeping magnetic
field induces a current sufficiently large to cause breakdown of
the QHE (see section 3.4), and the relatively large resistivity
results in the initial fast decay. As discussed below, breakdown
occurs when the Hall electric field exceeds a critical value;
as the current decays, the Hall electric field eventually drops
below this value, and the decay slows abruptly. One can
then consider the current flowing in a single loop around the
edge of the sample, having many possible relaxation paths (at
impurities or edge imperfections where the Hall electric field
is concentrated). As the current and the Hall electric field
decay, the faster of these relaxation paths ‘switch off’ leaving
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only the slower ones remaining. Eventually, in a finite sample,
presumably only one decay path would remain and the decay
would become exponential.

An alternative picture of the power-law decay is that
the induced currents circulate around equipotentials in the
disorder potential, forming many current loops of differing
areas. Each loop will decay at a rate related to its capacitance
and the resistivity. The faster decaying loops will disappear
first, eventually leaving only one loop. Although both these
models predict that the decay should eventually become single
exponential (assuming that there is a finite cut-off for the
longest possible time constant) it is important to emphasize
that the experiment does not show single-exponential decay,
even after the longest measurement period achieved, 24 h.

As a further alternative, one could consider a single
current loop, decaying at a single ‘weak point’, through
a quasi-elastic inter-LL scattering (QUILLS) process, as
described in section 3.4. Then as the Hall electric field is
reduced during the decay, the decay rate at this weak point
is also reduced, resulting in a larger time constant and a sub-
exponential (power-law) decay. In the case that the time
constant at the weak point can be approximated as growing
linearly with time (t > 0) as τ (t) ∼ t/n, so that the edge
charge reduces with time as Q̇ = −Qn/t , then an exact power-
law results, Q(t) = Q(t0)(t/t0)−n .

Long-lived induced currents have also been detected in
contacted 2DES [126, 127], and 2DES within electrostatically
defined quantum-point-contacts and quantum dots [128, 129]
(see section 3.3), and are presumably present, though
undetected, in conventional transport measurements. Given
that they are subject to a sub-exponential decay and are still
half their original size after a day, it remains an intriguing open
question how long they remain detectable before any departure
from a power law is observed.

3.3. Electrostatic effects of induced currents

Currents induced around integer LL filling factors are
accompanied by a transfer of charge due to the Lorentz
force—the Hall effect. If we consider the disc-shaped 2DES
of figure 12, then the tangential induced current causes a
radial Hall electric field and hence a build-up of charge
towards the perimeter of the disc. Specifically, when ∂B/∂ t
is parallel to B (an ‘up-sweep’) there is an accumulation
of positive charge towards the perimeter of the disc and
of negative charge towards the centre, while when ∂B/∂ t
is anti-parallel to B (a ‘down-sweep’) the reverse polarity
occurs. This charge redistribution has been observed in single-
electron transistor (SET) measurements of a 2DES [126, 127],
and in conductance measurements of electrostatically defined
quantum point contacts (QPCs) and quantum dots [128, 129].
The SET measurements probe the local electrostatic potential
of the 2DES with sub-micron resolution. In addition to the zig-
zag variation of the chemical potential, the SET also detected
large induced current peaks at integer filling factors 3, 4, 5,
6 and 8. These reversed sign when the sweep direction was
reversed and exhibited relaxation times up to some hours in
high-mobility 2DES (μH = 130 m2 V−1 s−1). By comparing

the induced current peaks detected by several SETs at different
positions, it was possible to infer that the induced current flows
in a single loop around the perimeter of the 2DES, rather
than in several smaller loops. Using a side gate to sweep the
edge of the sample past the SET the authors demonstrated that
the induced current flowed predominantly within a micron of
the sample edge. In the measurements of QPCs, the QPC
is formed by pinching off a 2DES with a split gate. In
its pinched-off state conduction through the device occurs
via tunnelling. Applying a sweeping magnetic field to the
device so that the 2DES passes through integer LL filling
factors results in hysteretic features in the QPC conductance,
with the conductance being lower on an up-sweep than on a
down-sweep. The authors compared the hysteretic features in
these nanostructures with a direct measurement of the induced
currents by magnetometry in an uncontacted 2DES from the
same MBE wafer, and found clear correlation in the magnetic
field, temperature and time dependences of the effects, strongly
indicative of a common origin. The explanation for the
hysteretic QPC magnetoconductance is that the accumulation
of positive charge close to the QPC (i.e. at the edge of the
2DES on each side of the QPC) during an up-sweep increases
the potential of the tunnelling barrier and hence reduces
conduction through the barrier. The negative edge charge built
up during a down-sweep has the opposite effect. In a separate
experiment the authors also demonstrated a similar hysteretic
effect in the Coulomb blockade of an electrostatically defined
quantum dot.

3.4. Breakdown of the QHE

Breakdown of the QHE in 2DES continues to be an intensely
researched area [130]. Very soon after the discovery of the
QHE [115] it was recognized that the effect was subject to
limitations: there is a gradual weakening (reduced plateau
width and increased error in plateau quantization) upon
increasing the temperature, and an abrupt weakening as
a function of current [131]. The high-current breakdown
is important both from fundamental and technological
viewpoints. From a fundamental point of view, studies of
breakdown give us an insight into the spatial distribution of
current in the QHE, and understanding the mechanism for
breakdown provides an explanation for why the QHE quantum
fluid state is so robust. From a technological viewpoint, the
breakdown regime is important in metrological applications
because these involve measurement of the QHE at as high a
current as possible, short of breakdown.

Breakdown occurs in Hall bars at integer filling factor ν
when the current density exceeds a critical value (depending
on the details of sample geometry and quality) and is
characterized by a sharp increase in the longitudinal resistance
ρxx away from its virtually dissipation-free value ρxx → 0
observed at low temperature.

The current distribution is important in discussion of the
breakdown of the QHE, because it is the maximum current
density within the sample (or equivalently the maximum Hall
electric field) that determines whether breakdown will occur.
Many of the phenomena associated with the QHE are very
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successfully described by a model in which current is carried
by edge states, 1D channels corresponding to LL skipping
orbits [132]. However, the edge state picture by itself does
not describe the current distribution across a Hall bar. The Hall
current arises from the drift velocity of electrons in crossed
electric and magnetic fields (appendix B) and is carried by all
electrons of the 2DES, not just those around an energy μ—a
point emphasized by many authors (see [133] section IV, [134]
chapter 4 and [135] for example)— and can be non-zero in the
bulk.

Refinements of the edge state model taking into account
electron–electron interactions predict that these channels
become strips of compressible electron fluid alternating with
regions of incompressible QH liquid [136], and scanning
probe techniques have provided evidence for these strips [137].
However, Tsemekhman et al [135] have suggested that almost
all of the injected current in the QHE regime flows through the
bulk of the 2DES, an idea supported by the field-theoretical
description of the QHE of Shizuya [138] which makes the
distinction between chiral (diamagnetic) edge modes and bulk
edge modes. In any case, in the high-current regime in
which breakdown of the QHE occurs it is clear that edge state
models are no longer appropriate; they would imply electron
drift velocities many times larger than the sound velocity,
at which energy loss due to spontaneous phonon emission
would result in breakdown [130]. Instead, models in which
currents flow in the bulk of the 2DES are more applicable.
This does not however mean that the current distribution is
uniform [120, 139].

The first observations of QHE breakdown [131] estab-
lished that the sudden weakening of the QHE was caused
by a sudden onset of dissipation: as the current passing
through a Hall-bar sample was increased beyond a critical
value, the longitudinal voltage along it would rise abruptly
by several orders of magnitude. This nonlinearity in the I –V
characteristic occurred at critical current densities, jc, between
0.5 and 2 A m−1. These reports also raised the issue of
dissipation at the current contacts and its possible effect on
critical current. These and other early experiments, carried out
on Hall bars (widths 300–400 μm) [140, 141] or on Corbino-
geometry samples [131, 142], were analysed assuming uniform
current distribution, and therefore underestimated the critical
current density.

Measurements of the dependence of critical current on
Hall-bar width have gone some way to establishing the current
distribution at breakdown. Balaban et al [139] observed
a logarithmic dependence, which they explained in terms
of the edge-weighted bulk current distribution proposed by
MacDonald et al [120]. In contrast, Kawaji et al [143]
observed a linear dependence. Meirav et al [144] resolved
this apparent controversy by noting that different dependences
of critical current on width are observed in samples having
different levels of disorder: a logarithmic dependence is
present in high-mobility 2DES, in accordance with the model
of Macdonald et al; in low-mobility 2DES the currents follow a
network of complicated percolating paths through the sample,
dependent on the disorder potential and not accounted for
within the Macdonald model, resulting in a more uniform

Figure 17. Schematic representation of quasi-elastic
inter-Landau-level scattering, after Eaves et al [151]. The electric
field E causes the LLs to acquire a slope eE , so that states in the
lower occupied Landau level (�) have the same energy as nearby
states in the upper empty LL (�+ 1) and can tunnel into them if
perturbed by, for example, impurity or phonon scattering. The
wavefunctions ψ� and ψ�+1 overlap significantly when E exceeds a
critical electric field Ec.

current distribution and hence a linear dependence of critical
current on width.

Various mechanisms have been proposed for QHE break-
down, including an electron-heating instability [145, 146],
intra-LL transitions involving acoustic phonons [147], forma-
tion of percolating metallic channels under the influence of the
Hall electric field [148], and quasi-elastic inter-LL scattering
(QUILLS) [149–151]. The first two of these models predict
values of jc in agreement with early experiments. The electron-
instability model has also been used to explain a bistability
in the breakdown [152], and the dependence of breakdown
on Hall-bar length [118]. However, experiments assuming
an edge-weighted current distribution, experiments on 2DES
with short, narrow constrictions [153], and the magnetometry
experiments discussed below, all give larger values of jc, in
better agreement with the QUILLS model. Since we will use
this model to explain some of the magnetometry results, we
now review its main predictions.

According to the QUILLS model, adjacent LLs, which are
separated by an energy h̄ωc in the bulk of the 2DES, become
tilted due to the Hall electric field. When this tilt becomes large
enough to allow a significant overlap of the wavefunctions in
the two levels (figure 17), scattering between levels can occur.
Assuming the system is at integer filling factor � (ignoring
spin), then the �th LL is full and the (� + 1)th level is empty.
Transitions from the �th to the (� + 1)th level therefore result
in the onset of dissipation characterizing QHE breakdown. The
onset is sudden because of the exponential dependence of the
tunnelling rate on barrier width. From the figure, this occurs
when the Hall field reaches a critical value Ec given by

Ec = h̄ωc

elB [(2�+ 1)1/2 + (2�+ 3)1/2] , (33)

where lB is the magnetic length. Momentum is conserved in
such a transition either by emission of acoustic phonons, or by
the recoil of impurities. The presence of an impurity may also

21



J. Phys.: Condens. Matter 21 (2009) 103202 Topical Review

result in a local enhancement of the Hall electric field which
itself would encourage breakdown.

It would seem that the model used to explain QHE
breakdown depends on the specifics of the experiment, in
particular the geometry and contact configuration of the Hall
bar. This provides the motivation for studying breakdown in a
contact-free geometry.

3.4.1. Magnetometry measurements of breakdown of the
QHE. Nearly all QHE experiments are performed on Hall
bars, although there are some measurements on Corbino
geometries [154–157]. Corbino measurements are of interest
since they avoid possible problems associated with contacts in
Hall bars, but they are also geometrically very different from
Hall bars in that edge states can play no role. In magnetometry
experiments, we use a geometry which has essentially the
simple circular symmetry of the Corbino geometry, but in
which the current flows parallel to the edge as in a Hall bar.
This geometry is closely related to Laughlin’s well-known
thought experiment [158]. Furthermore, there is no electrical
contact to the sample. Thus investigations of induced currents
detected via their magnetic moment offer a unique contact-free
geometry in which to study breakdown of the QHE.

Following the early observation of the nonlinear I –V
(magnetization versus sweep rate) characteristics of induced
currents [9], the first breakdown investigations, on a 2DES
with ns = 3.6 × 1015 m−2, mobility μH = 27 m2 V−1 s−1,
demonstrated the same abrupt increase in dissipation as the
current is increased and used the saturation value of the
magnetization to estimate jc [123]. Assuming a uniform
current distribution in this large (1 cm2) sample yielded values
of jc lower than any previous experiments. However, using a
more realistic edge-weighted current distribution as proposed
by Balaban et al [139] (consistent with the relatively high
mobility of the sample) yielded critical Hall electric fields near
the sample edge consistent with the QUILLS model, but too
high to be explained by other models.

In subsequent contact-free investigations of both the
integer and the fractional QHEs (IQHE and FQHE) [124, 159],
measurements of jc as a function of filling factor were found to
have a magnetic field dependence in good agreement with the
piecewise B3/2 behaviour predicted by the QUILLS model (33)
for the IQHE. For FQHE breakdown, (33) should be modified
by replacing h̄ωc with the energy gap, �, associated with
the formation of quasiparticle–quasihole pairs (defined in
section 2.2.5)—the parameter defining the robustness of the
FQHE. Thus, a comparison of the FQHE critical currents with
those for the IQHE provides a quantitative measure of �. The
values obtained for ν = 1/3 and 2/3 were found to be in good
agreement with theory (for a review, see [107]), in contrast to
previous measurements using conventional activated transport
measurements. It is well known that activated transport
measurements underestimate � because they are sensitive
to the global energy separation between mobility edges. It
was argued that QUILLS scattering occurs on length scales
(of the order of lB ) which are much smaller than the scale of
the fluctuations in the disorder potential and that breakdown
was therefore a local process. The absolute values of

jc (or equivalently Ec) reported in these investigations are
even larger than predicted by QUILLS. Balaban et al [139]
argued previously that larger than expected values of jc

could arise if the disorder potential split the 2DES up into
domains. Assuming these domains took the form of strips
along the direction of current flow, the total current through
all strips would then be larger than the current through the
sample treated as a single domain, because of the logarithmic
dependence of current on width. It is important to note that
quantitative agreement with the simple QUILLS model is not
required in order to calculate � because � is obtained by
comparing the FQHE induced currents with those of the IQHE.
In an alternative analysis these results can be compared with
the theory of composite fermions [160], in which the strongly
interacting electrons couple to flux quanta to form (non- or
weakly-interacting) composite fermions and the FQHE can
then be considered to be the IQHE of these new quasiparticles.
� is then a measure of the effective mass of composite
fermions. The experiment yielded m∗

CF = 0.32 m0 for both
ν = 1/3 and 2/3, somewhat smaller than the value obtained
using conventional transport techniques [161].

In further magnetometry investigations, on both electron
systems [162, 163] and hole systems [164, 165], it became
apparent that there are a number of surprising aspects to
breakdown in contact-free geometries. First, the saturation
magnetic moment ms (proportional to critical current) is higher
in samples with lower mobilities. Second, the induced currents
are only detectable at temperatures ∼10 times lower than
the cyclotron energy. Third, ms itself has a temperature
dependence (figure 18): in low-mobility samples (μH �
75 m2 V−1 s−1), ms falls linearly with increasing T , reaching
zero at a temperature dependent on number density and filling
factor, typically ∼ 300 mK, and sometimes also plateaus
at a maximum value at low temperature; in higher-mobility
samples the drop off with temperature is faster, possibly
exponential, and there is no observable low-temperature
plateau.

3.4.2. Charge redistribution model. To explain the
temperature dependence both of the induced currents
themselves and of their saturation values at breakdown, a
model based on the arguments of Dyakonov [166], modified
to suit the unusual sample geometry, was invoked [163, 162]:
if the sample is a disc of radius R the magnetic moment due to
a tangential circulating current jφ(r) is

m = π

∫ R

0
jφ(r)r

2 dr = π

∫ R

0
σxy Er (r)r

2 dr (34)

where we have used the fact that in the QHE the Hall angle
is 90◦ and hence jφ = σxy Er , and Er is the radial Hall
electric field. Er is created by the redistribution of charge
under the influence of the Lorentz force. (In this discussion
the microscopic details of current paths through the sample
are ignored—we assume average current densities.) Dyakonov
pointed out that in two-dimensional systems, charges could
not accumulate solely at the edges but must be distributed
over the disc. The extra electron density �n in some regions
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Figure 18. The temperature dependence of the saturation magnetic
moment: (a) for the low-mobility sample of figure 13, ms rises as the
temperature is reduced, eventually reaching a plateau at low
temperature. The saturation magnetic moment has been normalized
to its low-temperature value. Above 1.1 K the I–V curve no longer
shows a distinct saturation. (b) In higher-mobility samples there is an
approximately exponential dependence. In this case,
ns = 1.02 × 1015 m−2 and μH = 100 m2 V−1 s−1. The exponential
fit, m = m0 exp −T/T0, gives T0 = 297 mK. The charge
redistribution model (section 3.4.2) provides an explanation for these
observations.

of the sample will raise the quasi-Fermi-energy (chemical
potential) above its equilibrium position midway between LLs,
and hence increase the probability of thermal activation of
electrons from the highest full LL to the lowest empty one
(figure 19). Conversely, in regions in which the electron
density is depleted by�n, the probability of thermal excitation
of holes is increased. Thus the total probability of thermal
excitation, and hence the dissipation is proportional to

exp[−(ε0/2 −�μ(�n))/kBT ]
+ exp[−(ε0/2 +�μ(�n))/kBT ]. (35)

The exponential dependence on |�n| accounts for the
abruptness of QHE breakdown. To determine the temperature
dependence of the effect, we assume that breakdown occurs
at some threshold value of (35). At breakdown one of

Figure 19. Two disorder-broadened LLs showing the position of the
Fermi energy at integer ν. When the magnetic field is swept,
electrons accumulate in or deplete from different regions within the
2DES. In regions of accumulation (�n + ve) the quasi-Fermi-energy
increases; in regions of depletion (�n − ve) it decreases. This results
in more thermally activated conduction. The shaded and unshaded
regions represent the localized and extended states, respectively.

the exponentials in (35) dominates and we can write the
breakdown condition:

exp[−(ε0/2 −�μ(�n))/kBT ] = C, (36)

in which C is a constant very much less than unity. This
provides an expression for �μ(�n) from which the critical
value of �n required for breakdown can be calculated:

�nc =
∫ ε0/2+�μ

ε0/2
ρ(ε) dε =

∫ ε0/2+kB T ln C

ε0/2
ρ(ε) dε. (37)

where ρ(ε) is the DOS of electrons.
To obtain the magnetic moment we next need to consider

the electrostatic consequences of this departure from a uniform
charge distribution. The Hall electric field depends on the
distribution of excess charge �n(r). A reasonable first
approximation for this distribution, which gives the maximum
possible value of m in (34) while maintaining charge neutrality,
is that there is a uniform excess charge +e�nc for r < R/

√
2

and a uniform charge depletion −e�nc for R/
√

2 � r � R,
the sign of the charges being reversed for the opposite sweep
direction (inset to figure 20). Figure 20 shows the resulting
Hall electric field, after a correction has been made for the
unphysical sign reversal of the field close to the edge of the
sample. Using this electric field distribution, the saturation
value of the magnetic moment, ms, can be calculated from (34):

ms = �πσxye�nc(T )R
3. (38)

Here � is a dimensionless constant which is ∼1.1 for the
electric field distribution discussed above. Regardless of the
exact distribution chosen, the conclusion is that ms has the
same temperature dependence as �nc, which we now discuss.

From (37) we see that the temperature dependence of
�nc depends on the form of ρ(ε) in the localized-state region
between the highest occupied and the lowest unoccupied LLs.
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Figure 20. Radial electric field resulting from the charge
redistribution model assuming a circular 2DES of radius R. Inset
shows the assumed bipolar charge distribution, which would be
caused by an up-sweep. The polarity of the distribution reverses for a
down-sweep.

Assuming that both of these LLs have the same shape, ρ(ε)
will be constant in the immediate vicinity of ε0/2. For high-
mobility 2DES, ρ(ε) will be very small at this point, but will
quickly become substantially larger (exponentially larger if
the LLs are Gaussian in shape) as we move away from ε0/2.
From (37) the range of the integral decreases as T increases
(note that ln C is negative) and so for high-mobility 2DES we
expect a sharp (possibly exponential) reduction in �nc, and
hence in ms, with temperature. This is in agreement with the
observations [162] of figure 18(b). In lower-mobility 2DES,
the DOS is larger around ε0/2, and there might also be a
constant background DOS in this region [167] as discussed
in section 2.2. Because of the relatively large DOS, a larger
charge build-up will be required to shift the quasi-Fermi-
energy to its critical position, resulting in a larger value of ms.
Assuming that the DOS is a constant, ρ0, over the range of
integration, ms becomes:

ms = �πσxyeR3(ε0/2 + kBT ln C)ρ0. (39)

The linear decrease of ms with T is in agreement with
measurements (figure 18(a)), though a saturation of ms at low
T is also observed, suggesting that at the lowest temperatures
QUILLS breakdown is occurring. Equation (39) predicts a
link between the cut-off of ms at high temperature and the
LL energy separation, which enables these measurements to
be used to determine the electronic g-factor [162].

This model also helps to explain the behaviour of the
induced currents as a function of ν, near integer ν. The
observation (figure 21) is that m generally decreases as
the system moves away from exact integer ν, and that in
some high-mobility samples there is a pronounced asymmetry
between up-and down-sweeps [168]. Away from integer ν,
μ lies closer to one LL than the other. For instance at ν >
integer, μmoves towards the upper LL. In this case the shift in
the quasi-Fermi-energy required for breakdown is less than at
exact integer ν in regions with an excess of electrons, but more

Figure 21. Induced currents in a 2DES with ns = 3.1 × 1015 m−2

and μH = 78 m2 V−1 s−1, at T = 50 mK. The charge redistribution
model explains the asymmetry between up- and down-sweeps in
terms of the different regions of excess charge and charge depletion
shown in the insets, as discussed in the text.

in regions with an electron depletion. As a result, breakdown
requires the positive space charge regions to have larger charge
density than the negative ones, �nc is larger for holes than for
electrons, or �n−

c < �n+
c . As discussed by Matthews et al

[168], this will cause an asymmetry between up-and down-
sweeps: the condition of overall charge neutrality causes the
boundary between the positive and negative regions shown in
the inset to figure 20 to move away from r = R/

√
2, in a

direction depending on both ν and the sweep direction. The
sweep direction for which this radius is increased (reduced)
will exhibit a larger (smaller) m simply because the area of
the current loop has increased (decreased). For instance, if
ν > integer then the boundary becomes larger than r = R/

√
2

for an up-sweep (upper inset in figure 21) and smaller than r =
R/

√
2 for a down-sweep (lower inset). This mechanism may

also explain the hysteresis seen in the swept-gate experiments
of Faulhaber et al [4].

3.4.3. QHE breakdown as an example of self-organized
criticality. A detailed examination of induced eddy current
peaks, in samples of moderate mobility, revealed an unusual
‘noisy’ structure which seems to be a manifestation of QHE
breakdown [169, 170]. This structure, not observed in
early experiments [122, 123], was detected by improving the
response time of the magnetometer measurements (using lock-
in time constants 50 ms or less), rapid data acquisition, and
slow magnetic field sweep rates. An example of the structure
observed, from the data of Elliott et al [170], is shown in
figure 22 for an approximately 10 mm square sample with
ns = 3.5 × 1015 m−2 and μH = 27 m2 V−1 s−1 at 4.2 K.

Noisy structure associated with QHE breakdown has been
reported on several occasions [140, 171–173]. In particular,
Cage et al [140] observed time-dependent fluctuations in
longitudinal voltage drop in a current-carrying Hall bar near
breakdown. However, the QHE breakdown observed in
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Figure 22. Temperature development of noise structure at the ν = 2 eddy current peak. The magnetometer output upon sweeping the
magnetic field up (upper curve) and down (lower curve) at 1.65 mT s−1 in sample NU762 develops structure below about 1 K. Temperatures
in (a)–(f) are 1.58, 1.33, 1.21, 1.10, 0.95, and 0.58 K.

induced current experiments is different from those in Hall-bar
experiments. In Hall bars the applied longitudinal current Ix

is the controlled parameter, and the longitudinal voltage drop
is a measure of ρxx . Once breakdown begins, independent of
the microscopic mechanism involved, an increase in ρxx with
constant Ix leads to an increased dissipation and a positive
feedback which further increases ρxx . In contrast, in induced
current experiments it is the induced electric field which is
the controlled parameter (depending on the sweep rate) and an
increase in ρxx now leads to a decrease in dissipation and a
self-limited current (see equation (C.14)).

An interesting feature of the noise structure in figure 22 is
that although it is not exactly reproducible, it always consists
of a sudden decrease in the signal, followed by more gradual
recovery towards the original size, irrespective of the field
sweep direction. (Upon reversing the field sweep direction,
the direction of all the features reverses, still with a sudden
decrease in the signal size towards zero, followed by gradual
rise towards the original size.) This recovery, illustrated in
figure 3 of the paper by Phillips et al [169], is closely linear at
lower temperatures but increasingly curved as the temperature
is raised. The sizes and number of jumps were found to
increase at low temperature.

Sometimes the noise jumps take a fairly regular form
(although again not exactly reproducible) as illustrated in
figure 23, which shows the same sample (ns = 4.8 ×
1015 m−2 and μH = 50 m2 V−1 s−1 at 4.2 K) as examined
by Phillips et al [169]. An explanation for the recovery
portion of the jumps was made by Elliott et al [170]: for
any sample geometry, in the limit ρxx → 0 around a Hall
plateau, the current density j and electric field in the sample
are essentially perpendicular. In figure 12 for instance the
tangential circulating eddy currents (opposing the change of
magnetic field) are perpendicular to the radial (Hall) field. The

Figure 23. Noise structure at 68 mK of the ν = 2 eddy current peaks
(up- and down-sweeps) in sample T73. The inset is a zoom-in on a
portion of the upper curve.

Hall voltage will therefore be dropped across the width w

near the edge of the 2DES. If B is static, the eddy currents
are almost constant, as noted above [122]. If B is swept,
each additional flux quantum �0 = h/e linking the sample
radius R will transfer a charge Q0 = (ie2/h)�0 across w
(where i is the plateau index) increasing both the Hall field
and circulating eddy current linearly with magnetic field. The
linear portion of the signal in figure 23 can thus be understood
in terms of this model, and is fully consistent with the Laughlin
thought experiment [158]. The interpretation of the structure
observed in figures 22 and figure 23 is thus that as the magnetic
field is swept, more charge is transferred until the critical Hall
field is reached, at which point breakdown causes charge to
be suddenly re-distributed across w. Once the discharge has
reduced the Hall field sufficiently, the sweeping magnetic field
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will tend to build up charge again until the process is repeated.
This model was extended [170] to explain the curvature seen
in the recovery at raised temperature; essentially, the slow
increase of signal is governed by the same capacitor–resistor
time constant τ = Cw/σxx (see equation (32) of section 3.2),
as derived in (C.5), where C is the capacitance per unit length
perpendicular to the width over which the Hall field is dropped.

In some samples (depending on their history of cool-
down from room temperature to cryogenic temperatures) it
appears that just a few weak spots for breakdown exist, and
a fairly regular pattern results, whilst in others a much more
complex pattern occurs. For the latter case, analysis of
several samples suggested that the Hall field at breakdown is
at a point of self-organized criticality (SOC). (This concept
was introduced [174] to explain the ubiquity of 1/ f noise
and has since been applied to a wide range of physical
phenomena.) Not only does the noise possess the general
features observed in avalanche models of SOC, such as of
magnetospheric activity [175] and of sandpiles [176], but there
are compelling physical reasons for expecting a self-organized
criticality. In particular, when a critical Hall field is reached,
one would expect that breakdown causes charge to be re-
distributed to the bulk in the form of an ‘avalanche’. Once
the avalanche has caused a discharge, the sweeping magnetic
field will tend to build up charge again until the process is
repeated. This is similar to the simple generic ‘sandpile’
model [174] of SOC. Thermal cycling and cool-down rates
might be expected to affect any imperfections in the sample at
which breakdown may occur. Most compelling, analysis of the
size and frequency of the jumps produced a reasonable power
law consistent with the predictions of SOC [177].

To understand fully the detailed mechanism of the noise
jumps and their statistics, a microscopic model of the current
distribution is required. One possibility is that the complex
structure of the jumps is related to the picture discussed
by Tsemekhman et al [178, 179] of a random resistor–
capacitor network, originating from an inhomogeneous 2DES
of interpenetrating compressible and incompressible regions
throughout the bulk of the sample, where charge can
transfer between isolated metallic (compressible) regions in
the bulk via hopping. Irrespective of the precise cause
of the breakdown, it appears likely that microscopically
inhomogeneous current density plays a role. Scanning probe
studies of quantum Hall breakdown while sweeping the
magnetic field would be very informative in this regard.

4. Conclusions

Low-dimensional systems of electrons and holes in high
magnetic fields at low temperatures show a wealth of exciting
phenomena which have resulted in intensive investigations
using conventional measurement techniques such as electronic
transport and optics. The relatively novel technique of
magnetometry provides fundamental information not obtain-
able using conventional probes. Equilibrium magnetization
provides a probe of the equilibrium thermodynamics of the
system and investigations have provided information about
the shape of the LL DOS and its evolution with magnetic

field. There remains controversy in this area however, and
the intriguing prospect that the assumption of a fixed 2DES
number density, independent of field, which underpins our
understanding of the QHE, may be incorrect. Evidently, further
theoretical and experimental work in this area is required. Non-
equilibrium magnetization provides a contact-free electrical
transport measurement which is suited to probing the regime of
vanishing ρxx associated with the QHE which is inaccessible
to conventional transport methods. The circulating induced
currents responsible for the non-equilibrium magnetization can
be extremely long-lived, persisting for as long as experiments
have been able to track them (longer than one day). Their non-
linear dependence on magnetic field sweep rate has provided
new insights into the breakdown of the QHE by high currents.
The recent observation that induced currents can influence the
behaviour of electrostatically defined nanostructures offers the
possibility of novel devices using induced currents to control
electrical transport through such structures, which may have
uses in quantum information processing. Developments in
magnetometer design, using the beneficial scaling of cantilever
sensitivity with reduced size, combined with novel detection
schemes, offer the exciting prospect of studying nanomaterials
such as carbon nanotubes and quantum dots.
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Appendix A. Free electron in 2D in a magnetic field

Consider an electron of mass m∗ and charge −e in the presence
of a field B = (0, 0, B) chosen in the z-direction, and in
a potential V (z), which represents the confining potential of
an electron at a heterojunction or in a quantum well. The
Hamiltonian is

H = 1

2m∗ (p + eA)2 + V (z) (A.1)

where A is the vector potential with B = ∇ × A. The energy
eigenvalues can be deduced [180, 181] from the commutation
relations for π = p + eA but here we move immediately
to a real-space representation of the Schrödinger equation,
requiring a choice of gauge for A. The gauge chosen also
affects the wavefunctions.
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Various choices of gauge for A are possible; for example:

A = (−By, 0, 0), A = (0, Bx, 0),

A =
(

− B

2
y,

B

2
x, 0

)
.

The last is the symmetric or Dingle gauge. We choose the first
one, which is the Landau gauge, and for which lines of constant
A run in the x-direction. Then the Schrödinger equation in the
real-space representation

1

2m∗
[
(px − eBy)2 + p2

y + p2
z

]
ψ + V (z)ψ = Eψ

can be expressed using the canonical momentum operator p →
−ih̄∇ as

1

2m∗

[
−h̄2 ∂

2

∂x2
+ 2i h̄eBy

∂

∂x
+ (eBy)2

− h̄2 ∂
2

∂y2
− h̄2 ∂

2

∂z2

]
ψ + V (z)ψ = Eψ. (A.2)

The form of the equation suggests a solution of the form
ψ = exp(ikx)φ(y)u(z). Substitution gives, after a little re-
arrangement
[
− h̄2

2m∗
∂2

∂y2
+ h̄2

2m∗ k2 − 2h̄eBy

2m∗ k + (eBy)2

2m∗

]
φ(y)u(z)

+
[
− h̄2

2m∗
∂2

∂z2
+ V (z)

]
φ(y)u(z) = Eφ(y)u(z).

The x-, y- and z-motions thus separate. Writing the total
energy E = ε + ξ we have

(
− h̄2

2m∗
∂2

∂z2
+ V (z)

)
u(z) = ξu(z) (A.3)

for the z-component. The eigensolutions ui (z), which of
course depend on the particular confining potential V (z), and
the corresponding energy eigenvalues (or so-called ‘subbands’)
ξi are labelled by the subband index i , which is normally
taken as an integer running from 0 (the lowest energy subband)
upwards. Similarly for the y-component

[
− h̄2

2m∗
∂2

∂y2
− h̄ωcky + m∗ω2

c y2

2
+ h̄2

2m∗ k2

]
φ(y) = εφ(y)

(A.4)
where ωc = eB/m∗ is the cyclotron frequency. This can be
written in the form of 1D simple harmonic motion in the y-
direction

[
− h̄2

2m∗
∂2

∂y2
+ m∗ω2

c

2

(
y − h̄k

m∗ωc

)2]
φ(y) = εφ(y) (A.5)

where we can write

yk = h̄k

m∗ωc
= h̄

eB
k = l2

Bk (A.6)

which is the centre of motion. The solutions for ε are simply

ε� = h̄ωc
(
�+ 1

2

)
where � = 0, 1, 2 . . . . (A.7)

This is independent of the subband index, and the physical
interpretation is that the applied magnetic field imposes
additional quantization (Landau quantization) on the energy
of each subband. In the cases of interest in this review, the
subband energy separations are normally much larger than
the Landau-level separations h̄ωc. Additionally, the electron
density is low enough to give occupancy of only the lowest
subband (or lowest few subbands).

The term yk is often expressed, as above, in terms of the
magnetic length

lB = (h̄/m∗ωc)
1/2 = (h̄/eB)1/2. (A.8)

Landau-level degeneracy; no spin

The in-plane part of the wavefunction is exp(ikx)φ(y) with
energy given by (A.7). The �-states are highly degenerate
as they are independent of the value of yk . Taking periodic
boundary conditions with length Lx in the x-direction allows
us to count the states:

k = 2π

Lx
nx , nx = 0,±1,±2, . . .

and the centres of the simple harmonic motion take the possible
values yk = (2πl2

B/Lx)nx . The centre of the wavefunction
in the y-direction we take to be constrained between 0 and
L y and the number of allowed yk values is thus L y/�yk =
Lx L y/2πl2

B = Lx L y × eB/h for each value of n. The
degeneracy per unit area of the sample is thus, if we multiply
by a factor two to include spin degeneracy,

gL = 2eB/h. (A.9)

Wavefunctions

The in-plane part of the wavefunction takes the form of
plane waves exp(ikx) in the x-direction and simple harmonic
oscillator wavefunctions (the solutions of (A.5)) in the y-
direction:

φ(y) ∝ H�

(
y − yk

lB

)
exp

[
−1

2

(
y − yk

lB

)2]
,

where H� are Hermite polynomials. The wavefunctions
exp(ikx)φ(y) are thus parallel strips in the x-direction (along
the lines of constant A), with equal spacing along the y-
direction given by �yk/ lB = 2πlB/Lx . Since lB ∼ 26 nm
at a field of ∼1 T, the wavefunctions overlap each other very
significantly in real space. The group velocity of the |�, k〉 state
is

v(�, k) = 1

h̄

(
∂ε�

∂k

)
= 0

so these states carry no electric current. Although the states
are extended in the x-direction and confined in the y-direction,
because of the massive degeneracy, linear combinations of the
|�, k〉 states exist which are confined in both directions and so
are localized. Application of electric fields and/or impurity
potentials will lift the degeneracy however, and remove the
freedom to choose between localized and extended states.
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Appendix B. Free electron in 2D in crossed fields

If we now add a uniform electric field E = (0, E, 0) in the y-
direction, the Schrödinger equation (A.2) gains an additional
term eEyψ added to the left-hand side. The same separation
of variables can be made as before and (A.5) becomes

[
− h̄2

2m∗
∂2

∂y2
+ m∗ω2

c

2

(
y − h̄k

m∗ωc

)2

+ eEy

]
φ(y)

= εφ(y). (B.1)

This can still be written in the form of 1D simple harmonic
motion in the y-direction
[
− h̄2

2m∗
∂2

∂y2
+ m∗ω2

c

2
(y − yk)

2 + h̄k E

B
− m∗E2

2B2

]
φ(y)

= εφ(y) (B.2)

where the new centre of motion is

yk = h̄k

m∗ωc
− eE

m∗ω2
c

= h̄k − m∗vd

eB
, (B.3)

using vd = E/B the classical drift velocity. The solutions
of (B.2) are, by comparison with (A.5) and (A.7)

εl = h̄ωc
(
�+ 1

2

) + eEyk + 1
2 m∗v2

d . (B.4)

The physical interpretation of this equation is that the LL
energies expressed by (A.7) in zero applied electric field are
shifted by an electrostatic potential energy term eEyk and a
kinetic energy term 1

2 m∗v2
d . From the last two equations the

group velocity is now

v(�, k) = 1

h̄

(
∂ε�

∂k

)
= E/B. (B.5)

Appendix C. Model of capacitance in induced eddy
currents

In the QH regime, any circulating eddy currents must be
associated with a nearly perpendicular (Hall) electric field.
We consider here a model (figure 12) in which the current
density jx at some position flows concentrated in a region of
effective width w (the distance over which the Hall field is
mostly dropped), supported by the Hall field Ey . (For example,
current may flow parallel to the sample edge, concentrated near
to the edge—but our model extends to a more general case.)
The charge/discharge current density jy across this region is
written

jy = −Cw Ėy (C.1)

where C is the capacitance per unit length of the region. From
Ohm’s law we have

(
jx

jy

)
=

(
σxx σxy

−σxy σxx

)(
Ex

Ey

)
. (C.2)

Discharge

First consider the case where the magnetic field has been swept
to an eddy current peak and then stopped. Then Ex = 0 and the
region has an initial charge on either side. Substituting (C.1)
and Ex = 0 in Ohm’s law gives

jx = σxy Ey jy = −Cw Ėy = σxx Ey. (C.3)

The equation for Ey has solution

Ey = Ey(0) exp(−t/τ) (C.4)

where the decay time constant is

τ = Cw/σxx (C.5)

and from (C.3)

jx = jx(0) exp(−t/τ). (C.6)

Charge up

Capacitance should also be important in the case that the
magnetic field is swept to an eddy current peak, starting with
zero charge. Assuming a current flowing near the sample edge,
then Ex = ε say, with ε related to the sample radius R and the
sweep rate Ḃ approximately as

ε ≈ − R

2
Ḃ. (C.7)

Instead of (C.3) we get, substituting (C.1) and Ex = ε in
Ohm’s law

jx = σxxε + σxy Ey

jy = −Cw Ėy = −σxyε + σxx Ey.
(C.8)

The equation for Ey has solution

Ey = σxy

σxx
ε(1 − exp(−t/τ)) (C.9)

where the time constant is as before

τ = Cw/σxx (C.10)

and from (C.8)

jx ≈ σ 2
xy

σxx
ε(1 − exp(−t/τ)). (C.11)

The main approximation in this charge-up picture is
neglecting the time dependence of σxx during the field sweep in
integrating (C.8). In particular, from (C.9), if σxx is sufficiently
small, or ε is sufficiently large, Ey might reach breakdown.
This would have the effect of increasing σxx to give a much
faster charge-up time τ . The model furthermore needs an
estimate of w in order to calculate actual current densities, and
hence Ey , from experimental values of magnetic moment.

A rough estimate of the maximum peak height as a
function of sweep rate can be obtained by assuming that σxx

is small (and constant) over a field width �B . The time �t
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to sweep to the centre of the peak is �B/2Ḃ, and substituting
into (C.11) gives

j peak
x ≈ σ 2

xy

σxx
ε
(
1 − exp

(−�B/2Ḃτ
))
. (C.12)

It is interesting to examine the dissipation j ·E during the
charge-up process. Because we are not dealing with a Hall bar,
an increase in σxx can actually lead to a decrease in dissipation.
This follows from (C.8)

j · E = (
jx Ex + jy Ey

) = σxx
(
ε2 + E2

y

)
. (C.13)

Just before breakdown, the Hall field Ey is much larger than the
imposed field ε, and the sudden decrease in Ey as breakdown
begins causes a decrease in dissipation. An analysis based
on (C.9), gives j · E = σxx ε

2 when t = 0, i.e. before the Hall
field has been established, j · E ∼ σxxε

2(tσxx/Cw) when the
field is starting to build (t 
 τ ) and

j ·E ∼ σxx ε
2
(

1 + (
σxy/σxx

)2
)

∼ ε2
(
σ 2

xy

)
/σxx (C.14)

once the Hall field is well established. This last equation shows
that an increase in σxx produces a decrease in dissipation, so
that breakdown is self-limiting.
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